1-20 of 1014 Search Results for

welding defects

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 2 Weld defect (lack of fusion). This defect did not cause a failure even after 27 years in a reheater. More
Image
Published: 01 January 2002
Fig. 11 Resistance-welded 4615 steel chain link that broke because of a weld defect. (a) A fracture surface of the chain link showing fatigue beach marks (arrow) progressing across the surface from the inside of the link. (b) Nital-etched longitudinal section through the link showing fracture More
Image
Published: 31 October 2011
Fig. 14 Calculated weldability map showing the tendency for various weld-defect formations as a function of welding power and speed. Many of these phenomena, including liquation, are predicted using computational thermodynamics and computational kinetics tools. Source: Ref 162 More
Image
Published: 01 November 2010
Fig. 14 Calculated weldability map showing the tendency for various weld-defect formations as a function of welding power and speed. Many of these phenomena, including liquation, are predicted using computational thermodynamics and computational kinetics tools. Source: Ref 162 More
Image
Published: 31 October 2011
Fig. 4 Various types of defects that occur during laser welding. Source: Ref 8 More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005579
EISBN: 978-1-62708-174-0
... Abstract Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects in gas tungsten arc (GTA) welds. This article describes the surface-tension-driven fluid flow model and its experimental observations. The effects of mass transport on arc...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001371
EISBN: 978-1-62708-173-3
..., and solid-state transformations. It describes the electroslag process development and the applications of electroslag and electrogas processes. The article concludes with a discussion on weld defects, such as temper embrittlement, hydrogen cracking, and weld distortion. electrogas welding electroslag...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001410
EISBN: 978-1-62708-173-3
... behavior and microstructural evolution that dictate weld-metal ferrite content and morphology. The article describes weld defect formation, namely, solidification cracking, heat-affected zone liquation cracking, weld-metal liquation cracking, copper contamination cracking, ductility dip cracking, and weld...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001415
EISBN: 978-1-62708-173-3
..., and metastable beta alloys. The article further discusses the weld microstructure for alpha-beta and metastable beta alloys and describes welding defects observed in titanium alloys. The influence of macro- and microstructural characteristics of titanium weldment on mechanical properties is also discussed...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001476
EISBN: 978-1-62708-173-3
... to repair weld defects and structural failures. It further discusses the preliminary assessment and base-metal preparation involved in weld repair. Furthermore, the article provides information on the general repair guidelines that are followed to ensure successful weld repairs of both ferrous (carbon...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001359
EISBN: 978-1-62708-173-3
... depth on weld bead characteristics. The article concludes with information on weld defects, such as lack of fusion, slag entrapment, solidification cracking, hydrogen cracking, or porosity. electrical stickout flux layer depth fusible flux granular flux hydrogen cracking lack of fusion...
Image
Published: 01 January 1996
Fig. 1 Defects and discontinuities in welded joints More
Image
Published: 01 January 1996
Fig. 11 Effect of volumetric defects on fatigue. (a) Slag inclusion in butt weld. Cracking from weld toe. (b) Porosity in butt weld. Cracking from weld toe. (c) Transverse groove welds containing porosity More
Image
Published: 31 October 2011
Fig. 11 Effect of tool rotational rate on defect formation in friction stir welding (FSW). Additionally, the effect of axial pressure on defects can be noted. Source: Ref 52 More
Image
Published: 01 January 2002
Fig. 2 Schematic of defects and discontinuities in welded joints More
Image
Published: 01 January 1993
Fig. 6 Defects in a multipass weld made on a 1.07 m (42 in.) diameter X-65 steel pipe. (a) Exterior view showing lack of uniformity (right arrow) and undercut (left arrow). (b) Interior view showing lack of penetration (right arrow) and burn-through (left arrow) More
Image
Published: 30 August 2021
Fig. 3 Schematic of defects and discontinuities in welded joints More
Image
Published: 30 August 2021
of the sling body showing weld defects More
Image
Published: 01 January 2002
of the sling body showing weld defects More
Image
Published: 01 January 1987
Fig. 187 Surface of a brittle fracture in an axle made of cold-drawn and stress-relieved AISI 1035 steel tubing. Fracture originated at a weld defect (at arrow) during very cold weather. Visible are chevron marks, which show that the fracture progressed clockwise along the left wall before More