Skip Nav Destination
Close Modal
Search Results for
weldability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 522 Search Results for
weldability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006510
EISBN: 978-1-62708-207-5
... Abstract Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity...
Abstract
Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity, and susceptibility to solidification cracking and liquation cracking. It provides an overview on welding processes, including gas metal arc welding, gas tungsten arc welding, resistance spot and seam welding, laser beam welding, and various solid-state welding processes. A review on joint design is also included, mainly in the general factors associated with service weldability (fitness). The article also provides a discussion on the selection and weldability of non-heat-treatable aluminum alloys, heat treatable aluminum alloys, aluminum-lithium alloys, and aluminum metal-matrix composites.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005644
EISBN: 978-1-62708-174-0
... Abstract Weldability refers to the ease of welding a material under the imposed fabrication conditions to perform satisfactorily during service. This article is a comprehensive collection of tables that summarize the general weldability of cast irons, steels, nonferrous metals, and their alloys...
Abstract
Weldability refers to the ease of welding a material under the imposed fabrication conditions to perform satisfactorily during service. This article is a comprehensive collection of tables that summarize the general weldability of cast irons, steels, nonferrous metals, and their alloys by common fusion welding processes.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001421
EISBN: 978-1-62708-173-3
... Abstract The effective integration of aluminum metal-matrix composites (Al-MMCs) into useful structures and devices often requires an understanding of the weldability of Al-MMCs that includes a thorough knowledge on the effects of various interactions between matrix and reinforcement...
Abstract
The effective integration of aluminum metal-matrix composites (Al-MMCs) into useful structures and devices often requires an understanding of the weldability of Al-MMCs that includes a thorough knowledge on the effects of various interactions between matrix and reinforcement. This article provides a detailed discussion on weldability and the effect of viscosity, chemical reactions, and solidification on weldability. It discusses different welding processes, namely, gas-tungsten arc welding, gas-metal arc welding, laser-beam welding, electron-beam welding, resistance welding, friction welding, transient liquid phase bonding, and capacitor discharge welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001431
EISBN: 978-1-62708-173-3
... Abstract This article focuses on the tests for evaluating the weldability, cracking susceptibility, weld pool shape, fluid flow, and weld penetration of base materials. These tests include different types of self-restraint tests, externally loaded tests for evaluating cracking susceptibility...
Abstract
This article focuses on the tests for evaluating the weldability, cracking susceptibility, weld pool shape, fluid flow, and weld penetration of base materials. These tests include different types of self-restraint tests, externally loaded tests for evaluating cracking susceptibility and weld penetration tests, weld pool shape tests, and Gleeble testing for evaluating weld pool shape, fluid flow, and weld penetration.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001415
EISBN: 978-1-62708-173-3
... metallurgy titanium titanium alloys welding defects weldability TITANIUM is a low-density element (approximately 60% of the density of steel) that can be highly modified by alloying and deformation processing. Titanium is nonmagnetic and has good heat transfer properties. Its coefficient of thermal...
Abstract
This article emphasizes the physical metallurgy of titanium and titanium alloys along with their microstructural response to fusion welding condition. The titanium alloys are classified into unalloyed or commercially pure titanium, alpha and near-alpha alloys, alpha-beta alloys, and metastable beta alloys. The article further discusses the weld microstructure for alpha-beta and metastable beta alloys and describes welding defects observed in titanium alloys. The influence of macro- and microstructural characteristics of titanium weldment on mechanical properties is also discussed. The article concludes with a discussion on the different welding processes used in the welding of titanium and titanium alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
... Abstract This article focuses on the physical metallurgy and weldability of four families of titanium-base alloys, namely, near-alpha alloy, alpha-beta alloy, near-beta, or metastable-beta alloy, and titanium based intermetallics that include alpha-2, gamma, and orthorhombic systems...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001417
EISBN: 978-1-62708-173-3
...-treatable aluminum alloys. corrosion resistance crack sensitivity degradation ductility heat-treatable aluminum alloys liquation cracking material selection porosity weld strength weldability THE HEAT-TREATABLE ALUMINUM ALLOYS provide good strength and toughness in engineering...
Abstract
Aluminum alloys, particularly the heat-treatable alloys, are sensitive to weld cracking. Anticipation of these characteristics and general knowledge of these materials assist in selection of suitable method for welding heat-treatable aluminum alloys. This article provides a general description of the metallurgy, characteristics, and applications of heat-treatable aluminum alloys and a detailed discussion on the characteristics of heat-treatable aluminum alloys, their resulting impact on the weld quality and property, along with the methods of avoiding or reducing the impacts. The impact created in the weld quality includes crack sensitivity, liquation cracking, porosity, and heat-affected zone degradation. The article provides an overview of filler alloy selection for reducing weld crack sensitivity and increasing weld strength, ductility, and corrosion resistance in the welds of heat-treatable aluminum alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001418
EISBN: 978-1-62708-173-3
... Abstract Non-heat-treatable aluminum alloys constitute a group of alloys that rely solely upon cold work and solid solution strengthening for their strength properties. This article focuses on the weldability and weld properties of different classes on non-heat-treatable aluminum alloys...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
... and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature...
Abstract
Conventional high-strength aluminum alloys produced via powder metallurgy (P/M) technologies, namely, rapid solidification (RS) and mechanical alloying (mechanical attrition) have high strength at room temperature and elevated temperature. This article focuses on the metallurgy and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature deformation behavior of these alloys, which affect the selection and application of fusion and solid-state welding processes. The article provides specific examples of material responses to welding conditions and highlights the microstructural development in the weld zone.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001420
EISBN: 978-1-62708-173-3
... Abstract This article is a guide to the welding of commercially available aluminum-lithium alloys. It discusses the weldability issues created by weld porosity, hot cracking, and filler metal selection and presents the data revealed from weld characterization. aluminum-lithium alloys hot...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001034
EISBN: 978-1-62708-161-0
... Abstract This article aims to survey the factors controlling the weldability of carbon and low-alloy steels in arc welding. It discusses the influence of operational parameters, thermal cycles, and metallurgical factors on weld metal transformations and the susceptibility to hot and cold...
Abstract
This article aims to survey the factors controlling the weldability of carbon and low-alloy steels in arc welding. It discusses the influence of operational parameters, thermal cycles, and metallurgical factors on weld metal transformations and the susceptibility to hot and cold cracking. The article addresses the basic principles that affect the weldability of carbon and low-alloy steels. It outlines the characteristic features of welds and the metallurgical factors that affect weldability. It describes the common tests to determine steel weldability. There are various types of tests for determining the susceptibility of the weld joint to different types of cracking during fabrication, including restraint tests, externally loaded tests, underbead cracking tests, and lamellar tearing tests. Weldability tests are conducted to provide information on the service and performance of welds. The major tests that are discussed in this article are weld tension test, bend test, the drop-weight test, the Charpy V-notch test, the crack tip opening displacement test, and stress-corrosion cracking test.
Image
Published: 31 October 2011
Fig. 14 Calculated weldability map showing the tendency for various weld-defect formations as a function of welding power and speed. Many of these phenomena, including liquation, are predicted using computational thermodynamics and computational kinetics tools. Source: Ref 162
More
Image
Published: 01 December 1998
Fig. 9 Weldability diagram for some γ′-strengthened iron-nickel- and nickel-base superalloys, showing influence of total aluminum + titanium hardeners
More
Image
Published: 30 November 2018
Fig. 21 Trans-Varestraint weldability data for aluminum alloys. Source: Ref 61
More
Image
Published: 30 November 2018
Fig. 22 Weldability data showing the improved resistance to hot cracking obtained when using an aluminum-silicon filler alloy. (a) Trans-Varestraint test data for alloy 2094 weldments. Source: Ref 61 . (b) Inverted-tee test data for alloy 2090 weldments. Source: Ref 61 , 62
More
Image
Published: 01 January 1993
Fig. 3 Trans-Varestraint weldability data for aluminum alloys. Source: Ref 25
More
Image
Published: 01 January 1993
Fig. 4 Weldability data showing the improved resistance to hot cracking obtained when using an aluminum-silicon filler alloy. (a) Trans-Varestraint test data for alloy 2094 weldments. Source: Ref 25 . (b) Inverted-tee test data for alloy 2090 weldments. Source: Ref 27
More
Image
Published: 01 January 1993
Fig. 16 Typical setup used to measure weldability using the impulse decanting test. Source: Ref 11
More
Image
Published: 01 January 1993
Fig. 6 Varestraint test weldability data for Cabot alloy 214 with varying boron concentrations
More
Image
Published: 01 January 1993
Fig. 2 Plot of weld time versus secondary weld current to obtain weldability lobes for selected 0.8 mm (0.03 in.) thick steels. Electrode parameters: force, 1.8 kN (0.20 tonf); tip diameter, 5.0 mm (0.20 in.)
More
1