Skip Nav Destination
Close Modal
By
Arnold R. Marder
By
Gary Fisher, Tonya Wolfe
By
Dongbin Wei, Wenzhen Xia, Zhengyi Jiang, Liang Hao
By
J.R. Davis
By
S.D. Kiser
By
Steven C. Kung
By
Mitchell R. Dorfman
By
Mitchell R. Dorfman
By
Bo Hu
Search Results for
weld-overlay coatings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 186
Search Results for weld-overlay coatings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Volume steady-state erosion rates of weld-overlay coatings at 400 °C (750 °...
Available to PurchasePublished: 01 January 1997
Fig. 5 Volume steady-state erosion rates of weld-overlay coatings at 400 °C (750 °F) as a function of average microhardness at 400 °C (90° impact angle; alumina erodent). Source: Ref 22
More
Book Chapter
Effects of Surface Treatments on Materials Performance
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002466
EISBN: 978-1-62708-194-8
... costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains...
Abstract
Surface treatments are used in a variety of ways to improve the material properties of a component. This article provides information on surface treatments that improve service performance so that the design engineer may consider surface-engineered components as an alternative to more costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains surface hardening and diffusion coatings such as carburizing, nitriding, and carbonitriding. The article also tabulates typical characteristics of carburizing, nitriding, and carbonitriding diffusion treatments.
Book Chapter
Dip, Barrier, and Chemical Conversion Coatings
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003217
EISBN: 978-1-62708-199-3
... and their application. It also provides information on weld-overlay and thermal spray coating, porcelain enameling, and the preparation of enamel frits for steels. The article closes by describing methods and materials for ceramic coating. ceramic coatings chemical conversion coatings continuous...
Abstract
There are various coating techniques in practice to prevent the deterioration of steels. This article focuses on dip, barrier, and chemical conversion coatings and describes hot-dip processes for coating carbon steels with zinc, aluminum, lead-tin, and other alloys. It describes continuous electrodeposition for steel strip and babbitting and discusses phosphate and chromate conversion coatings as well. It also addresses painting, discussing types and selection, surface preparation, and application methods. In addition, the article describes rust-preventive compounds and their application. It also provides information on weld-overlay and thermal spray coating, porcelain enameling, and the preparation of enamel frits for steels. The article closes by describing methods and materials for ceramic coating.
Book Chapter
General Introduction to Surface Engineering
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003212
EISBN: 978-1-62708-199-3
... the required properties. These processes include solidification treatments such as hot dip coatings, weld-overlay coatings, and thermal spray surfaces; deposition surface treatments such as electrodeposition, chemical vapor deposition, and physical vapor deposition; and heat treatment coatings...
Abstract
This article is a general introduction to surface engineering of engineering components, providing an overview of the applications of surface treatments and the environmental protection regulations directly or indirectly related to surface engineering processes.
Book Chapter
Protective Overlays and Coatings Used in Oil Sands
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005712
EISBN: 978-1-62708-171-9
... Abstract This article focuses on coatings and overlays adopted for use as wear- and corrosion-resistant materials in oil sand processing. It describes the most common application processes for oil sand coatings and overlays, including welding, high-velocity oxyfuel thermal spray, laser cladding...
Abstract
This article focuses on coatings and overlays adopted for use as wear- and corrosion-resistant materials in oil sand processing. It describes the most common application processes for oil sand coatings and overlays, including welding, high-velocity oxyfuel thermal spray, laser cladding, and vacuum brazing. The article provides information on the selection of overlays and materials such as chromium-carbide-base overlays and tungsten carbide metal-matrix composites.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006391
EISBN: 978-1-62708-192-4
... materials, namely, iron-base overlays, chromium carbide-based overlays, nickel- and cobalt-base alloys, and tungsten carbide-based metal-matrix composite overlays. It discusses the types of hardfacing processes, such as arc welding processes, and laser cladded, oxyacetylene brazing and vacuum brazing...
Abstract
Hardfacing refers to the deposition of a specially selected material onto a component in order to reduce wear in service as a preventative measure or return a worn component to its original dimensions as a repair procedure. This article provides information on various hardfacing materials, namely, iron-base overlays, chromium carbide-based overlays, nickel- and cobalt-base alloys, and tungsten carbide-based metal-matrix composite overlays. It discusses the types of hardfacing processes, such as arc welding processes, and laser cladded, oxyacetylene brazing and vacuum brazing processes. The arc welding processes include shielding metal arc welding, gas metal arc welding/flux cored arc welding, gas tungsten arc welding, submerged arc welding, and plasma transferred arc welding. The article also reviews various factors influencing the selection of the appropriate hardfacing for specific applications.
Book Chapter
Lubrication and Wear in Rolling
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006422
EISBN: 978-1-62708-192-4
..., adhesion, and fatigue, as well as oxidative and corrosive wear. Surface modification techniques, such as hardening by induction heat treating, weld overlay, thermal spray coating, coating via physical vapor deposition (PVD), and laser surface treatment, are also discussed for improving roll service life...
Abstract
Rolling is the process of reducing the thickness or changing the cross section of a workpiece by compressive forces applied through a set of rolls. This article emphasizes flat rolling and illustrates basic flat-rolling process used to reduce the thickness of a rectangular cross section. It provides a discussion on hot rolling, cold rolling, and warm rolling, as well as lubrication in rolling. The article reviews the lubrication for iron-base and nickel-base materials, light metals, copper-base alloys, and titanium alloys. It discusses the wear mechanism in rolling: abrasion, adhesion, and fatigue, as well as oxidative and corrosive wear. Surface modification techniques, such as hardening by induction heat treating, weld overlay, thermal spray coating, coating via physical vapor deposition (PVD), and laser surface treatment, are also discussed for improving roll service life.
Book Chapter
Hardfacing, Weld Cladding, and Dissimilar Metal Joining
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001442
EISBN: 978-1-62708-173-3
... metal joining erosion ferrous materials hardfacing laser welding low-alloy steel metal-to-earth abrasion alloys metal-to-metal wear alloys nonferrous materials oxyfuel welding stainless steel thermal spray coating tungsten carbides wear weld cladding SURFACING, as applied to welding...
Abstract
Hardfacing is a form of surfacing that is applied for the purpose of reducing wear, abrasion, impact, erosion, galling, or cavitation. This article describes the deposition of hardfacing alloys by oxyfuel welding, various arc welding methods, laser welding, and thermal spray processes. It discusses the categories of hardfacing alloy, such as build-up alloys, metal-to-metal wear alloys, metal-to-earth abrasion alloys, tungsten carbides, and nonferrous alloys. A summary of the selection guide for hardfacing alloys is presented in a table. The article describes the procedures for stainless steel weld cladding and the factors influencing joint integrity in dissimilar metal joining. It concludes with a discussion on joining carbon and low-alloy steels to various dissimilar materials (both ferrous and nonferrous) by arc welding.
Book Chapter
Hardfacing Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
..., the hardfacing materials are available in a variety of forms. The most popular processes, and the forms most commonly associated with each process, are: Weld overlay process Consumable form Oxyacetylene Bare cast or tubular rod Shielded metal arc (SMA) Coated solid or tubular rod (stick electrode...
Abstract
Hardfacing is defined as the application of a wear-resistant material, in depth, to the vulnerable surfaces of a component by a weld overlay or thermal spray process Hardfacing materials include a wide variety of alloys, carbides, and combinations of these materials. Iron-base hardfacing alloys can be divided into pearlitic steels, austenitic (manganese) steels, martensitic steels, high-alloy irons, and austenitic stainless steel. The types of nonferrous hardfacing alloys include cobalt-base/carbide-type alloys, laves phase alloys, nickel-base/boride-type alloys, and bronze type alloys. Hardfacing applications for wear control vary widely, ranging from very severe abrasive wear service, such as rock crushing and pulverizing to applications to minimize metal-to-metal wear. This article discusses the types of hardfacing alloys, namely iron-base alloys, nonferrous alloys, and tungsten carbides, and their applications and advantages.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004190
EISBN: 978-1-62708-184-9
... steel weld overlay ( Ref 14 , 20 , 21 , 22 , 23 , 24 ). Weld overlay has also been applied to extend the service life of digesters with corroded stainless steel cladding or with corroded overlay. Other protective measures include application of thermal spray coatings ( Ref 16 ) and anodic...
Abstract
This article discusses the methods of pulp production, pulp processing, pulp bleaching, and paper manufacturing. It describes various types of digesters, their construction materials, the corrosion problems encountered, and methods to protect these digesters from corrosion. The article examines the corrosion problems in high-yield mechanical pulping, sulfite process, neutral sulfite semichemical pulping, chemical recovery, tall oil plants, wastewater treatment, and recovery boilers. It explains the stages of chlorine-based and nonchlorine bleaching, process water reuse for elemental chlorine-free and nonchlorine bleaching stages, selection of material for bleaching equipment, developments in oxygen bleaching, and the use of highly corrosion-resistant materials for bleach plant equipment. The article reviews the materials used in the construction of paper machine components and specific corrosion problems that affect them. It discusses the composition and corrosive nature of white water. The article also addresses the corrosion and chemical recovery associated with kraft pulping liquors.
Book Chapter
Special Metallurgical Welding Considerations for Nickel and Cobalt Alloys and Superalloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001425
EISBN: 978-1-62708-173-3
... Abstract The process of making assemblies of solid-solution and precipitation hardening groups of alloys and superalloys often requires welding of dissimilar metals, welding of diffusion-bonded materials, and sometimes weld overlay cladding and even thermal spraying that in turn requires...
Abstract
The process of making assemblies of solid-solution and precipitation hardening groups of alloys and superalloys often requires welding of dissimilar metals, welding of diffusion-bonded materials, and sometimes weld overlay cladding and even thermal spraying that in turn requires special knowledge and treatments developed specifically for each material. This article emphasizes the special metallurgical welding considerations for welding solid-solution and precipitation hardening nickel alloys, cobalt alloys, and superalloys.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... reactive sputtering thermal spray coating wear COATINGS AND OTHER SURFACE MODIFICATIONS are used for a variety of functional, economic, and aesthetic purposes. For example, thermal spray and weld-overlay tungsten carbide-base coatings are used to prevent excessive wear in heavy industry...
Abstract
Coatings and other surface modifications are used for a variety of functional, economic, and aesthetic purposes. Two major applications of thermal spray coatings are for wear resistance and corrosion resistance. This article discusses thermal (surface hardening) and thermochemical (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering.
Book Chapter
Friction Surfacing
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005560
EISBN: 978-1-62708-174-0
..., friction surfacing has been successfully developed and commercialized over the past decade. The process is used for corrosion- and wear-resistant coatings and for reclamation of worn engineering components. Friction surfacing can be considered as an alternative for fusion-based overlay coatings...
Abstract
The friction surfacing process enables deposition of a wide variety of high-specification materials with an ideal metallurgical bond onto a range of metal substrates. This article provides a process description and discusses the equipment used for, and the applications of, friction surfacing.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
..., and Cobalt Alloy Weld Overlay Materials , Coatings and Bimetallics for Aggressive Environments , Sisson R.D. Jr. Ed., American Society for Metals , 1985 , p 125 – 142 19. Zimmerly C.A. , Inal O.T. , and Richman R.H. , Explosive Welding of a Near-Equiatomic Nickel-Titanium...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Book Chapter
Fireside Corrosion in Coal- and Oil-Fired Boilers
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004156
EISBN: 978-1-62708-184-9
... to combat fireside corrosion in the lower furnace. Various coatings are available for waterwall protection; these can be applied either in the shop or directly in the field. The primary techniques used for field-applied coatings are metal spray and weld overlay. The most common metal spray processes...
Abstract
The presence of certain impurities in coal and oil is responsible for the majority of fireside corrosion experienced in utility boilers. In coal, the primary impurities are sulfur, alkali metals, and chlorine. The most detrimental impurities in fuel oil are vanadium, sodium, sulfur, and chlorine. This article describes the two categories of fireside corrosion based on location in the furnace: waterwall corrosion in the lower furnace and fuel ash corrosion of superheaters and reheaters in the upper furnace. It discusses prevention methods, including changes to operating parameters and application of protective cladding or coatings.
Book Chapter
Corrosion of Cobalt and Cobalt-Base Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003817
EISBN: 978-1-62708-183-2
.... They are used as castings, P/M parts, thermal-sprayed coatings, and weld overlays. No hot working is possible on these alloys. Hot isostatic pressing has been used to consolidate powders into a solid piece. The precipitation of Laves phase is cooling-rate dependent. Therefore, the microstructure...
Abstract
This article addresses the cobalt and cobalt-base alloys most suited for aqueous environments and those suited for high temperatures. The performance of cobalt alloys in aqueous environments encountered in commercial applications is discussed. The article provides information on the environmental cracking resistance of the cobalt alloys. Three welding processes that are used for hardfacing with the high-carbon Co-Cr-W alloys, namely, oxyacetylene, gas tungsten arc, and plasma-transferred arc are also discussed. The article examines the effects of various modes of high-temperature corrosion. It describes the applications and fabrication of cobalt alloys for high-temperature service.
Book Chapter
Corrosion and Wear Control for Industrial Applications
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005735
EISBN: 978-1-62708-171-9
... for use with coatings or linings. Such equipment includes sharp edges, reduced nozzles, rough welds, and other sites that make for difficult application of thermal spray coatings. Frequently, therefore, equipment modifications are essential. At the very least, all edges must be well rounded because...
Abstract
This article focuses on noble and neutral coatings and the requirements necessary to achieve successful industrial applications. These include corrosion and wear control and repair applications in processing and chemical industries, and valve and downhole drilling applications in the petrochemical industry. The article also discusses substrate chemistry and preparation; coating selection process and microstructure; sealing by chemical, post-heat treatments, and laser processing; and thermal spray process alternatives.
Book Chapter
Introduction to Applications for Thermal Spray Processing
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005732
EISBN: 978-1-62708-171-9
... a carefully planned coating selection. Fig. 1 Component and service considerations Fig. 2 Selection of the correct technology—weld overlays, thermal spray, or some other technology—in surface mining, for example, requires an understanding of part design requirements, part costs, repair costs...
Abstract
This article describes the process of selecting an optimum coating and material system for a specific application. It reviews critical coating functions that influence the coating selection process, and presents some application success stories. The article explores the benefits of thermal spray coatings and functions they provide. It also presents key references from various National Thermal Spray Conference, United Thermal Spray Conference, and International Thermal Spray Conference Proceedings from 2006 through 2012.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001073
EISBN: 978-1-62708-162-7
... materials during World War I, they were then used from about 1922 in weld overlay form to protect surfaces from wear. These early cobalt-base “hardfacing” alloys were used on plowshares, oil well drilling bits, dredging cutters, hot trimming dies, and internal combustion engine valves and valve seats. Since...
Abstract
This article provides a general overview of physical and mechanical properties, alloy compositions, applications, and product forms of cobalt-base alloys as wear-resistant, corrosion-resistant, and/or heat-resistant materials. The discussion is largely focused on cobalt-base alloys for wear resistance, as this is the single largest application area of cobalt-base alloys.
Book Chapter
Metal and Alloy Powders for Welding, Hardfacing, Brazing, and Soldering
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006079
EISBN: 978-1-62708-175-7
... Abstract Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications...
Abstract
Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications and the specific powder properties and characteristics they require.
1