Skip Nav Destination
Close Modal
Search Results for
weld voltage
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 535 Search Results for
weld voltage
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1993
Fig. 6 Effect of variation in welding voltage at constant current on weld bead profile. (a) Excessively low voltage. (b) Excessively high voltage
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001359
EISBN: 978-1-62708-173-3
... of SAW. The article discusses flux classification relative to production method, relative to effect on alloy content of weld deposit, and relative to basicity index. It describes the procedural variations and the effect of weld current, weld voltage, electrical stickout, travel speed, and flux layer...
Abstract
Submerged arc welding (SAW) is an arc welding process in which the arc is concealed by a blanket of granular and fusible flux. This article provides a schematic illustration of a typical setup for automatic SAW and discusses the advantages and limitations and the process applications of SAW. The article discusses flux classification relative to production method, relative to effect on alloy content of weld deposit, and relative to basicity index. It describes the procedural variations and the effect of weld current, weld voltage, electrical stickout, travel speed, and flux layer depth on weld bead characteristics. The article concludes with information on weld defects, such as lack of fusion, slag entrapment, solidification cracking, hydrogen cracking, or porosity.
Image
Published: 31 October 2011
Fig. 3 Cross sections of electron beam welding using high-voltage welding equipment. (a) Shallow-penetration weld on 304L stainless steel with weld parameters of 100 kV, 10 mA, and a travel speed of 17 mm/s (0.7 in./s). Courtesy of T.A. Palmer, Applied Research Laboratory of Pennsylvania tate
More
Image
Published: 30 November 2018
Fig. 10 Voltage and current wave forms for alternating current welding. (a) Partial and complete rectification. dc, direct current; oc, overcurrent. (b) With arc stabilization. (c) With current balancing
More
Image
Published: 31 October 2011
Fig. 10 Voltage and current wave forms for alternating current welding. (a) Partial and complete rectification. dc, direct current; oc, overcurrent. (b) With arc stabilization. (c) With current balancing. Source: Ref 5
More
Image
Published: 31 October 2011
Fig. 6 Large-chamber, low-voltage electron beam welding system with movable gun. Courtesy of Sciaky, Inc.
More
Image
Published: 31 October 2011
Fig. 7 Large-chamber, high-voltage electron beam welding system with fixed gun. Courtesy of PTR-Precision Technologies, Inc., Enfield, CT
More
Image
Published: 31 October 2011
Fig. 8 Large-chamber, high-voltage electron beam welding system. Courtesy of pro-beam AG & Co. KGaA
More
Image
Published: 31 October 2011
Fig. 9 Very large-chamber, low-voltage electron beam welding machine (600 m 3 , 80 kV/40 kW machine). Courtesy of pro-beam AG & Co. KGaA
More
Image
Published: 01 January 1997
, with integral backing Joint preparation: Original design Backing ring machined Improved design Cap end machined, pipe end reduced Electrode wire 3.2 mm ( 1 8 in.) diam EL12 Flux F62 Welding position Flat (horizontal-rolled pipe) Welding voltage 25 to 26 V Welding
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005664
EISBN: 978-1-62708-174-0
... Abstract This article provides the basic physics of the two most widely used arc welding processes: gas tungsten arc welding and gas metal arc welding. It describes the various control parameters of these processes such as arc length control, voltage control, heat input control, and metal...
Abstract
This article provides the basic physics of the two most widely used arc welding processes: gas tungsten arc welding and gas metal arc welding. It describes the various control parameters of these processes such as arc length control, voltage control, heat input control, and metal-transfer control.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001337
EISBN: 978-1-62708-173-3
... Abstract Power sources are apparatuses that are used to supply current and voltages that are suitable for particular welding processes. This article describes power sources for arc welding, resistance welding, and electron-beam welding. The more-common welding processes that use constant...
Abstract
Power sources are apparatuses that are used to supply current and voltages that are suitable for particular welding processes. This article describes power sources for arc welding, resistance welding, and electron-beam welding. The more-common welding processes that use constant-current and constant-voltage power sources are listed in a table. The article describes the open-circuit voltage characteristics and power source control methods. The control methods employ either pulse width modulation (PWM) or frequency modulation (FM).
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001362
EISBN: 978-1-62708-173-3
... component can be used as a constant-voltage or a constant-current rectifier. Power sources have welding currents that typically range from 40 to 200 A for the plasma arc and from 60 to 300 A for the GMAW element at 100% duty cycle. However, equipment with welding currents up to 800 A is available and can...
Abstract
Plasma-metal inert gas (MIG) welding can be defined as a combination of plasma arc welding (PAW) and gas-metal arc welding (GMAW) within a single torch, where a filler wire is fed through the plasma nozzle orifice. This article describes the principles of operation and operating modes of plasma-MIG welding. It discusses the advantages and disadvantages of the plasma-MIG process. The article describes the components, including power sources and welding torches, of equipment used for the plasma-MIG process. It provides information on inspection and weld quality control and troubleshooting techniques. The article concludes with a discussion on the applications of the plasma-MIG process.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005598
EISBN: 978-1-62708-174-0
... be used as a constant-voltage or a constant-current rectifier. Power sources have welding currents that typically range from 40 to 200 A for the plasma arc and from 60 to 300 A for the GMAW element at 100% duty cycle. However, equipment with welding currents up to 800 A is available and can be used...
Abstract
Plasma gas metal arc welding (GMAW) is a process that can be defined as a combination of plasma arc welding (PAW) and GMAW within a single torch, where a filler wire is fed through the plasma nozzle orifice. Although originally referred to as plasma-MIG welding, the preferred term is plasma-GMAW. This article provides a detailed discussion on the operating procedures, advantages, disadvantages, and applications of GMAW and describes the equipment used in the plasma-GMAW.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001371
EISBN: 978-1-62708-173-3
... conditions and metal transfer and weld pool morphology. It presents constitutive equations for welding current, voltage, and travel rate for ESW. The article describes the metallurgical and chemical reactions in terms of fusion zone compositional effects, weld metal inclusions, solidification structure...
Abstract
Electroslag welding (ESW) and electrogas welding (EGW) are two related procedures that are used to weld thick-section materials in the vertical or near-vertical position between retaining shoes. This article discusses the fundamentals of the electroslag process in terms of heat flow conditions and metal transfer and weld pool morphology. It presents constitutive equations for welding current, voltage, and travel rate for ESW. The article describes the metallurgical and chemical reactions in terms of fusion zone compositional effects, weld metal inclusions, solidification structure, and solid-state transformations. It describes the electroslag process development and the applications of electroslag and electrogas processes. The article concludes with a discussion on weld defects, such as temper embrittlement, hydrogen cracking, and weld distortion.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005565
EISBN: 978-1-62708-174-0
... input voltage, three-phase input machines, inverter-based power sources, short arc gas metal arc welding power sources, and multiple arc power sources are discussed. The article also presents the factors to be considered when selecting a power source. arc welding inverter-based power sources...
Abstract
This article describes the characteristics and technology of power sources for major arc welding methods along with the suggested criteria for assuring that a power source selection can safely deliver the desired output and yield long service life. Power sources with single-phase AC input voltage, three-phase input machines, inverter-based power sources, short arc gas metal arc welding power sources, and multiple arc power sources are discussed. The article also presents the factors to be considered when selecting a power source.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article...
Abstract
Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article also describes two consumable elements, such as electrode and shielding gas, of the GMAW process. It concludes with information on the safety aspects.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001355
EISBN: 978-1-62708-173-3
... be sufficient for maintenance and repair applications. Constant-current power supplies are used in certain situations, such as field welding applications, where portable constant-current SMAW power supplies are readily available. The addition of a contactor and a voltage-sensing wire feeder makes...
Abstract
In the flux-cored arc welding (FCAW) process, the heat for welding is produced by an electric arc between a continuous filler metal electrode and a workpiece. This article discusses the advantages and disadvantages and applications of the FCAW process. It schematically illustrates the semiautomatic FCAW equipment used in the gas-shielded FCAW process. The article discusses the manufacture of flux-cored electrodes and the classification of electrodes, such as carbon and low-alloy steel electrodes, stainless steel electrodes, and nickel-base electrodes. The functions of common core ingredients in FCAW electrodes are listed in a table.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005566
EISBN: 978-1-62708-174-0
... and deposit rate. The source is readily compatible with programmable logic controllers. Fig. 9 Alternating current (ac) square wave and sine wave output Control System Requirements If constant voltage output is used, the wire is fed at a controlled, constant speed. The required welding...
Abstract
Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking. Finally, the article provides information on the safety measures to be followed in this process.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005595
EISBN: 978-1-62708-174-0
... Abstract This article describes the fundamental theory of magnetic pulse welding (MPW). It reviews the equipment used for MPW, namely, work coil, capacitor bank, high-voltage power supply, high-voltage switches, and field shapers. The article discusses the MPW process and explains the critical...
Abstract
This article describes the fundamental theory of magnetic pulse welding (MPW). It reviews the equipment used for MPW, namely, work coil, capacitor bank, high-voltage power supply, high-voltage switches, and field shapers. The article discusses the MPW process and explains the critical parameters needed to obtain acceptable welds. Applications and safety guidelines of the MPW are also presented.
1