Skip Nav Destination
Close Modal
By
C.E. Cross, W.T. Tack
By
T.A. Palmer, P.W. Hochanadel, K. Lachenberg
By
Peter K. Sokolowski
By
Jerry E. Gould
By
S.S. Glickstein, E. Friedman
By
S.J. Matthews
By
Niyanth Sridharan, Christian M. Petrie
By
Ray Dixon, S.P. Chen
By
K. Sampath, W.A. Baeslack III
By
S.S. Glickstein, E. Friedman, R.P. Martukanitz
By
A. Wahid, D.L. Olson, D.K. Matlock, C.E. Cross
Search Results for
weld characterization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1002
Search Results for weld characterization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Materials characterization techniques for examining a tantalum weld carried...
Available to PurchasePublished: 01 January 1993
Fig. 6 Materials characterization techniques for examining a tantalum weld carried out in Skylab. (a) SEM micrograph showing a large carbide particle near the center of the sample. (b) Scanning Auger spectroscopic carbon map showing a large carbide particle near the center of the sample. (c
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001343
EISBN: 978-1-62708-173-3
... Abstract This article describes the characterization of welds as a sequence of procedures, where each procedure is concerned with a finer scale of detail. The first level of characterization involves information that may be obtained by direct visual inspection and measurement of the weld...
Abstract
This article describes the characterization of welds as a sequence of procedures, where each procedure is concerned with a finer scale of detail. The first level of characterization involves information that may be obtained by direct visual inspection and measurement of the weld. The article discusses nondestructive evaluation of welds by encompassing techniques that are used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. It reviews the macrostructural characterization of a sectioned weld, including features such as number of passes; weld bead size, shape, and homogeneity; and the orientation of beads in a multipass weld. The article provides examples that describe how welds are characterized according to the procedures.
Book Chapter
Selection and Weldability of Aluminum-Lithium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001420
EISBN: 978-1-62708-173-3
... Abstract This article is a guide to the welding of commercially available aluminum-lithium alloys. It discusses the weldability issues created by weld porosity, hot cracking, and filler metal selection and presents the data revealed from weld characterization. aluminum-lithium alloys hot...
Abstract
This article is a guide to the welding of commercially available aluminum-lithium alloys. It discusses the weldability issues created by weld porosity, hot cracking, and filler metal selection and presents the data revealed from weld characterization.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
... Abstract This article describes some of the welding discontinuities and flaws characterized by nondestructive examinations. It focuses on nondestructive inspection methods used in the welding industry. The sources of weld discontinuities and defects as they relate to service failures...
Abstract
This article describes some of the welding discontinuities and flaws characterized by nondestructive examinations. It focuses on nondestructive inspection methods used in the welding industry. The sources of weld discontinuities and defects as they relate to service failures or rejection in new construction inspection are also discussed. The article discusses the types of base metal cracks and metallurgical weld cracking. The article discusses the processes involved in the analysis of in-service weld failures. It briefly reviews the general types of process-related discontinuities of arc welds. Mechanical and environmental failure origins related to other types of welding processes are also described. The article explains the cause and effects of process-related discontinuities including weld porosity, inclusions, incomplete fusion, and incomplete penetration. Different fitness-for-service assessment methodologies for calculating allowable or critical flaw sizes are also discussed.
Book Chapter
Quality Control of Electron Beams and Welds
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005610
EISBN: 978-1-62708-174-0
... of these beam parameters can be used to improve process understanding and control. The article also describes the application areas of beam diagnostics: machine characterization, weld parameter transfer, and weld quality control. beam diagnostic tools beam diagnostics closed-loop control system...
Abstract
The primary goal of quality control in electron beam (EB) welding is to consistently produce defect-free and structurally sound welds. This article discusses the common procedures for controlling the EB welding process, the control of the essential machine parameters, and the introduction of closed-loop controls and diagnostic feedback systems in the EB welding systems. It reviews the beam diagnostic tools that interrogate the beam to produce a reconstruction of the power density distribution and provide additional information on the size and shape of the EB. Knowledge of these beam parameters can be used to improve process understanding and control. The article also describes the application areas of beam diagnostics: machine characterization, weld parameter transfer, and weld quality control.
Book Chapter
Joining Powder Metallurgy Steel Components
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006108
EISBN: 978-1-62708-175-7
... Abstract This article characterizes the physical differences between powder metallurgy (PM) and wrought or cast materials, as they apply to joining. It discusses acceptable joining procedures and techniques, including welding and brazing and solid-state methods. Information on the weldability...
Abstract
This article characterizes the physical differences between powder metallurgy (PM) and wrought or cast materials, as they apply to joining. It discusses acceptable joining procedures and techniques, including welding and brazing and solid-state methods. Information on the weldability of various PM materials is presented. The article also describes the effects of porosity on several important properties that affect the welding characteristics.
Book Chapter
Mechanisms of Bonding for Solid-State Welding Processes
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005574
EISBN: 978-1-62708-174-0
... be characterized as having two stages: heating and forging. The article also includes a table that illustrates weld strengths as a function of annealing temperature for a range of materials. annealing temperature contaminant displacement forging heating interatomic bonding interfacial structure...
Abstract
This article discusses three distinct mechanisms of bonding for solid-state (forge) welding processes, namely, contaminant displacement/interatomic bonding, dissociation of retained oxides, and decomposition of the interfacial structure. It explains the processes that can be characterized as having two stages: heating and forging. The article also includes a table that illustrates weld strengths as a function of annealing temperature for a range of materials.
Book Chapter
Characterization and Modeling of the Heat Source
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001481
EISBN: 978-1-62708-173-3
... of strength Q on the surface. The applicability of point sources to characterize energy input for laser-beam welding processes will be explored later in this article. Equation 1 describes the heat-input distribution from a stationary arc. Only the magnitude of the heat input, the distribution...
Abstract
This article briefly reviews the physical phenomena that influence the input-energy distribution. It discusses the several simplified and detailed heat source models used in the modeling of arc welding, high-energy-density welding, and resistance welding processes.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001754
EISBN: 978-1-62708-178-8
... Abstract Optical metallography, one of the most common materials characterization techniques, uses visible light to magnify structural features of interest. This article discusses the use of optical methods to evaluate micro and macrostructure and relate it to process conditions and material...
Abstract
Optical metallography, one of the most common materials characterization techniques, uses visible light to magnify structural features of interest. This article discusses the use of optical methods to evaluate micro and macrostructure and relate it to process conditions and material behavior. It covers the steps involved in sample preparation, including sectioning, mounting, grinding, polishing, and etching, and presents several examples of macro and microanalysis on various metals and alloys.
Book Chapter
Selection of Cobalt-, Titanium-, Zirconium-, and Tantalum-Base Corrosion-Resistant Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001430
EISBN: 978-1-62708-173-3
... is particularly deleterious as a residual trace element and can cause welding problems. Cobalt-chromium CR alloys with relatively low nickel or iron content (for example, UNS alloy R31233, Table 1 ) exhibit unique mechanical property characteristics in the as-welded condition. Weldments are characterized...
Abstract
This article discusses the weldability characteristics of cobalt-base corrosion-resistant (CR) alloys, titanium-base CR alloys, zirconium-base CR alloys, and tantalum-base CR alloys that assist in the selection of suitable alloy and welding method for producing high-quality welds.
Book Chapter
Overview of Weld Discontinuities
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001472
EISBN: 978-1-62708-173-3
...: A depression on the face of the weld or root surface extending below the surface of the adjacent base metal Metallurgical Discontinuities Metallurgical discontinuities include: Cracks: Fracture-type discontinuities characterized by a sharp tip and high ratio of length and width to opening...
Abstract
This article provides an overview of the types of weld discontinuities that are characteristic of specialized welding processes. These welding processes include electron-beam welding, plasma arc welding, electroslag welding, friction welding, resistance welding, and diffusion welding. The article also describes the common inspection methods used to detect these discontinuities.
Book Chapter
Ultrasonic Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006574
EISBN: 978-1-62708-290-7
... strength (UTS), and elongation, the test serves as a high-throughput characterization technique to distinguish acceptable welds from unacceptable ones. For example, this test has been routinely used to design experiments on Al-3003 welds, where a 75% increase in weld amplitude showed an increase...
Abstract
Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique that leverages the principles of ultrasonic welding, mechanized tape layering, and computer numerical control (CNC) machining operations to create three-dimensional metal parts. This article begins with a discussion on the process fundamentals and process parameters of UAM. It then describes metallurgical aspects in UAM. The article provides a detailed description of a wide range of mechanical characterization techniques of UAM, namely tensile testing, peel testing, and pushpin testing. The article ends with information on sensor embedding.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001026
EISBN: 978-1-62708-161-0
... Abstract Dual-phase steels are a new class of high-strength low alloy (HSLA) steels characterized by a microstructure consisting of about 20% hard martensite particles dispersed in a soft ductile ferrite matrix. In addition to high tensile strength, in the range of 550 MPa (80 ksi), dual-phase...
Abstract
Dual-phase steels are a new class of high-strength low alloy (HSLA) steels characterized by a microstructure consisting of about 20% hard martensite particles dispersed in a soft ductile ferrite matrix. In addition to high tensile strength, in the range of 550 MPa (80 ksi), dual-phase steels exhibit continuous yielding behavior, a low 0.2% offset yield strength, and a higher total elongation than other HSLA steels of similar strength. The article discusses some of the more pertinent aspects of dual-phase steels, such as heat treatment, microstructure, mechanical properties, chemical composition, and manufacturability. In general, these steels have a carbon content of less than 0.1%, which ensures that they can be spot welded. However, newer high-carbon dual-phase steels in development are generating interest due to their unique combination of total elongation and tensile strength.
Book Chapter
Fundamentals of Metal and Metal-to-Ceramic Adhesion
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001348
EISBN: 978-1-62708-173-3
... Abstract This article reviews quantifying adhesion, bonding, and interfacial characterization and strength in a solid-state welding process. It discusses metal-metal configurations and provides information on experimental work carried out in measuring the mechanical properties of interfaces...
Abstract
This article reviews quantifying adhesion, bonding, and interfacial characterization and strength in a solid-state welding process. It discusses metal-metal configurations and provides information on experimental work carried out in measuring the mechanical properties of interfaces based on theoretical analysis. A discussion on the properties affecting adhesion is also provided.
Book Chapter
Selection and Weldability of Dispersion-Strengthened Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
... excessive hydrogen, either in solution or as fine-size pores not detectable using conventional nondestructive evaluation techniques. Applicable Welding Processes The above weldability considerations show that RS-P/M aluminum-base alloys characterized by a low residual hydrogen content (<1 mL/100 g...
Abstract
Conventional high-strength aluminum alloys produced via powder metallurgy (P/M) technologies, namely, rapid solidification (RS) and mechanical alloying (mechanical attrition) have high strength at room temperature and elevated temperature. This article focuses on the metallurgy and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature deformation behavior of these alloys, which affect the selection and application of fusion and solid-state welding processes. The article provides specific examples of material responses to welding conditions and highlights the microstructural development in the weld zone.
Image
Charpy impact energy vs. test temperature for type 308 welds showing the du...
Available to PurchasePublished: 01 January 1996
Fig. 6 Charpy impact energy vs. test temperature for type 308 welds showing the ductile-brittle transition temperature phenomena. SMA, shielded-metal arc; SA, submerged arc; GTA, gas-tungsten arc. Half-size Charpy specimens (5 × 5 × 25.4 mm with a 0.76 mm notch) were used to characterize
More
Book Chapter
Metallography and Microstructures of Weldments
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003785
EISBN: 978-1-62708-177-1
... Uses Transverse Bead geometry Joint characterization Microstructural characterization Solidification structure Defect documentation Solidification shrinkage cracks Underbead cracks Toe cracks Hydrogen cracks Weld metal longitudinal cracks Weld metal root...
Abstract
This article provides a review of metallographic procedures and techniques for analyzing the microstructure of fusion welded joints. It discusses sample preparation, the use of backing plates, and common sectioning methods. It identifies the various types of defects that can occur in arc welded metals, organizing them according to the sectioning method by which they are observed. It describes the relationship between weld bead morphology and sectioning direction and its effect on measurement error. The article examines micrographs from stainless steel, aluminum, and titanium alloy joints, highlighting important details such as solidification and solid-state transformation structures and what they reveal about the welding process. Besides arc welding, it also discusses laser and electron beam welding methods, resistance and spot welding, and the welding of dissimilar metals.
Book Chapter
Characterization and Modeling of the Heat Source
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... arc. The amount of heat transferred to the workpiece ( fQ ), the distribution parameter ( r ′), and the duration of heating are necessary to fully characterize the input energy. Figure 6 shows typical variations of the weld bead depth and width for stationary spot welds on 6.5 mm (0.25 in.) thick...
Abstract
Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005605
EISBN: 978-1-62708-174-0
... Abstract The ultrasonic additive manufacturing (UAM) process consists of building up solid metal objects by ultrasonically welding successive layers of metal tape into a three-dimensional shape with periodic machining operations to create detailed features of the resultant object. This article...
Abstract
The ultrasonic additive manufacturing (UAM) process consists of building up solid metal objects by ultrasonically welding successive layers of metal tape into a three-dimensional shape with periodic machining operations to create detailed features of the resultant object. This article provides information on the materials, welding parameters, process consumables, procedures, and applications of the UAM. It describes the methods for determining metallurgical and mechanical properties of solid metal parts to assess the range of materials and applications for which the process is suited. These methods include peel testing, push-pin testing, and microhardness/nanohardness testing. The article also reviews the issues to be addressed in maintaining UAM fabrication quality.
Book Chapter
Corrosion of Weldments
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001471
EISBN: 978-1-62708-173-3
... cracks have an anodic crack tip and often leave apparent corrosion products along the fracture. Cracking is often characterized by crack branching and usually has a delay time prior to crack initiation, with initiation occurring at corrosion pits. Increasing the ferrite content in stainless steel weld...
Abstract
Weldments exhibit special microstructural features that need to be recognized and understood in order to predict acceptable corrosion service life of welded structures. This article describes some of the general characteristics associated with the corrosion of weldments. It emphasizes the role of macrocompositional and microcompositional variations to bring out differences that need to be realized in comparing corrosion of weldments to that of wrought materials. The article concludes with a discussion on important welding practices used to minimize corrosion in weldments.
1