1-20 of 757

Search Results for wear modes

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 1 Diagram of impact wear modes. (a) normal impact; (b) compound impact (with sliding); and (c) compound impact (tangential contact). v , velocity More
Image
Published: 31 December 2017
Fig. 2 Scanning electron microscope images of three abrasive wear modes observed in abrasive sliding of a quenched steel pin against metal surfaces. (a) Cutting mode on brass plate. (b) Wedge-forming mode on stainless steel plate. (c) Plowing mode on brass plate. Source: Ref 16 More
Image
Published: 15 January 2021
Fig. 1 Schematic diagram of impact wear modes resulting from bodies variously moving with velocity, V . (a) Normal impact. (b) Compound impact (with motion of both bodies causing sliding on impact). (c) Compound impact (with tangential contact causing sliding on impact). (d) Normal impact More
Image
Published: 31 December 2017
Fig. 16 Schematic representation of the general wear modes of MoS 2 during rolling contact in humid air. Source: Ref 44 More
Image
Published: 31 December 2017
Fig. 3 (a) Wear mode and (b) wear mechanism map of AISI 303 (UNS S30300) stainless steel sliding against AISI 8620 (UNS G86200) low-alloy steel pin. Source: Ref 9 More
Image
Published: 31 December 2017
Fig. 13 Wear mode as a function of the friction factor, f HK , and the attack angle, θ. The friction factor is a dimensionless shear-strength parameter defined as the quotient of the interfacial shear stress and the shear strength of the soft metal. More
Image
Published: 31 December 2017
Fig. 3 Abrasive wear mode diagram. Source: Ref 17 More
Image
Published: 01 January 2002
Fig. 28 Scanning electron micrographs showing the three modes of abrasive wear typically found in steels: (a) low-stress scratching, (b) higher-stress gouging, and (c) impact or indentation More
Image
Published: 01 January 1989
Fig. 11 Cutting tool failure modes. (a) Characteristic wear and fracture surfaces on cutting tools. (b) Catastrophic failure. (c) Typical wear measurements for a turning tool. VB = flank wear. Source: Ref 9 More
Image
Published: 31 December 2017
Fig. 10 Common wear and damage modes of elastomeric O-rings. Courtesy of Ecoseal Co. Ltd., Thailand; adapted with modifications More
Image
Published: 15 January 2021
Fig. 28 Scanning electron micrographs showing the three modes of abrasive wear typically found in steels: (a) low-stress scratching, (b) higher-stress gouging, and (c) impact or indentation More
Image
Published: 30 August 2021
Fig. 1 Cutting tool failure modes. (a) Characteristic wear and fracture surfaces on cutting tools. (b) Catastrophic failure. (c) Typical wear measurements for a turning tool. VB , flank wear More
Book Chapter

By Koji Kato
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006394
EISBN: 978-1-62708-192-4
... are also given. This article discusses the influence of size and number of wear particles on polishing at three abrasive wear modes. These include cutting, wedge forming, and plowing. The article concludes with information on applications and prospects of polishing wear control. abrasive wear modes...
Book Chapter

By Mari Lindgren
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006372
EISBN: 978-1-62708-192-4
... selection for a particular wear mode. The corrosion modes include dry sliding, tribocorrosion, erosion, erosion-corrosion, cavitation, dry erosion, erosion-oxidation, galling and fretting. microstructure abrasion adhesive wear austenitic stainless steel corrosion resistance dry sliding duplex...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels. abrasive wear failures abrasive wear mechanisms adhesive wear erosive-type wear wear failure analysis...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006393
EISBN: 978-1-62708-192-4
... Abstract This article discusses the composition, properties and applications of bearing steels. It focuses on the typical wear modes that rolling-element bearings experience: contact fatigue wear, abrasive wear, adhesive wear, and corrosive wear. The article provides information on reliability...
Book Chapter

By George K. Nikas
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006371
EISBN: 978-1-62708-192-4
... and failure. It provides a list of some common seal wear modes and failures, namely abrasion, cavitation damage, chemical attack, compression set, corrosion, damage during abrupt decompression, dieseling damage, extrusion damage, installation damage, spiral or rolling damage, and vaporization damage...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006373
EISBN: 978-1-62708-192-4
.... The article explains the effects of load, sliding velocity, and temperature on the friction coefficient. It describes three types of wear modes, namely, abrasive, adhesion, and fatigue. The article discusses the frictional behavior of polymer composites and polymer coatings. It concludes by providing...
Image
Published: 01 January 2002
wear and significant improvements in impact abrasion resistance. In contrast, due to the hard phases, the composite material performs better than would be expected, given its bulk hardness; however, due to its low fracture toughness, it performs significantly worse in more severe wear modes. More
Image
Published: 15 January 2021
wear and significant improvements in impact abrasion resistance. In contrast, due to the hard phases, the composite material performs better than would be expected, given its bulk hardness; however, due to its low fracture toughness, it performs significantly worse in more severe wear modes. More