Skip Nav Destination
Close Modal
Search Results for
water-cooled cupolas
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 53 Search Results for
water-cooled cupolas
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 1998
Fig. 6 Sectional views of conventional (non-water-cooled) and water-cooled cupolas. The conventional type shown is refractory lined. Water-cooled types incorporate either an enclosed jacket or an open cascade flow.
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005197
EISBN: 978-1-62708-187-0
... in cupola equipment, including preheated air blast, recuperative hot blast systems, and duplex electric holders. It discusses the shell, intermittent or continuous tapping, tuyere and blower systems, refractory lining, water-cooled cupolas, emission-control systems, and storage and handling of the charge...
Abstract
In high-iron-tonnage operations, the cupola remains the most efficient source of continuous high volumes of iron needed to satisfy high production foundries or the multiple casting machines of centrifugal pipe producers. This article explores successful improvement technologies in cupola equipment, including preheated air blast, recuperative hot blast systems, and duplex electric holders. It discusses the shell, intermittent or continuous tapping, tuyere and blower systems, refractory lining, water-cooled cupolas, emission-control systems, and storage and handling of the charge materials. The article provides a discussion on the control tests for cupola, including the chill test and mechanical test. It concludes with information on specialized cupolas such as the cokeless cupola and the plasma-fired cupola.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006337
EISBN: 978-1-62708-179-5
... cupola pressure-actuated pouring furnaces refractory linings water-cooled cupolas VARIOUS TYPES OF FURNACES have been used for cast iron melting ( Fig. 1 ). In terms of tonnage, the primary melting methods used by iron casting facilities are cupola and induction furnaces, constituting 60 and 36...
Abstract
Various types of furnaces have been used for cast iron melting. In terms of tonnage, the primary melting methods used by iron casting facilities are cupola and induction furnaces. This article describes the operation and control principles of cupola furnace. It discusses the advantages of specialized cupolas such as cokeless cupola and plasma-fired cupola. Melting in iron foundries is a major application of induction furnaces. The article describes the operations of two induction furnaces: the channel induction furnace and the induction crucible furnace. It explains the teapot principle of pressure-actuated pouring furnaces and provides information on the effect of pouring magnesium-treated melts.
Image
Published: 01 December 2008
Fig. 6 Cupola melt designs. (a) Water-cooled bare shell. (b) Refractory-lined shell. Source: Ref 5
More
Image
Published: 01 December 2008
Image
Published: 31 August 2017
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003173
EISBN: 978-1-62708-199-3
... for these changes. It is essential that the lining not be permitted to wear through to the coil, which will quickly melt and allow the cooling water to enter the molten bath with catastrophic results. Cupola Melting Cupolas are vertical shaft furnaces used for melting cast iron. Although similar in principle...
Abstract
The melting process often includes refining and treating the metal. The choice of which type of melting to use depends on a number of factors: type of alloy being melted, the local cost of electric power, and local environmental regulations. This article discusses the principles, furnace types, charging practices of metal melting methods, namely induction melting, cupola melting, arc melting, crucible melting, reaction melting, and vacuum melting, and the refractories and charging practice of reverberatory furnaces. Molten metal treatment of steels and aluminum also is discussed in the article.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005908
EISBN: 978-1-62708-167-2
... of the electrical furnace efficiency on the electrical conductivity of the cooling water temperature. With a reduced average coil temperature due to lower cooling water temperature, a substantial reduction of coil losses and hence an increase of the furnace efficiency is possible. Figure 9(b) shows the dependence...
Abstract
Induction processes for melting and heating of metals belong to the high-energy-consuming industrial processes, and continuous improvement of energy efficiency of competitive melting and heating technologies is of increasing interest. This article discusses the energy demand of various melting processes and the improvements in the efficiency of melting processes in induction crucible furnaces. It provides energetic and ecological comparisons of different furnaces for melting of cast iron and aluminum. The article also describes the energy and power management of induction melting processes.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005294
EISBN: 978-1-62708-187-0
.... This water allowed the refractory materials in the melt zone to burn out until it felt the cooling effect of the water-cooled shell. This change improved the energy efficiency of the water-cooled, refractory-lined cupolas to near the level of the older refractory-lined shells. Both cupola designs are shown...
Abstract
This article reviews the production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the molten metal treatments for high-silicon gray, high-nickel ductile, and malleable irons. Foundry practices are also described for compacted graphite, high-silicon ductile, and high-alloy white irons.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006329
EISBN: 978-1-62708-179-5
... predominantly 6 mm (0.24 in.) wall sections in the water jackets above the firing deck. This is simply because the cooling rate of the cylinder head is reduced by the mass effect resulting from enclosed cores and the proximity (often less than 12 mm, or 0.47 in.) of one 6 mm (0.24 in.) wall to the other. Thus...
Abstract
Foundry practices critical to the production of cast irons include melting, alloying, molten metal treatment, pouring, and the design of feeding systems (gating and risering) to allow proper filling of the casting mold. This article reviews these production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the castability factors, such as fluidity, shrinkage, and resistance, of gray iron. Typical cupola charge compositions and the final analyses for class 30 and class 40 gray iron castings are presented in a table. The article describes the induction melting and arc furnace melting used in gray iron foundries. It also reviews the inoculation methods such as stream inoculation and mold inoculation, of gray iron.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005904
EISBN: 978-1-62708-167-2
... are lower for the induction furnace. Refractory and water costs are more or less the same. Energy costs (with highly fluctuating costs and qualities of coke) often are lower for electricity. Melting material costs generally are lower for the cupola furnace (due to the lower quality requirements...
Abstract
The crucible induction furnace is growing as an alternative melting unit to the cupola furnace due to its low specific power and reduced power consumption during solid melting material. This article details the process engineering features of the crucible induction furnace. It discusses the various processes involved in melting, holding, and pouring of liquid melt in crucible induction furnaces wherein the holding operation is carried out in channel furnace and pouring operation in pressure-actuated pouring furnaces. The article examines the behavior of furnace refractory lining to defects such as erosion, infiltration, crack formation, and clogging, and the corresponding preventive measures to avoid the occurrence of these defects. It elucidates the overall furnace operations, including commissioning, operational procedures, automatic process monitoring, inductor change, and dealing with disturbances.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003174
EISBN: 978-1-62708-199-3
... is to be produced. Instead, molds for iron castings are usually made of sand, using clay-water or resin bonds. Sea coal is generally added to the molding sand; it expands and cokes in response to the heat from the solidifying casting, and resists penetration of molten metal into the mold. Cores are often coated...
Abstract
Cast iron, which usually refers to an in situ composite of stable eutectic graphite in a steel matrix, includes the major classifications of gray iron, ductile iron, compacted graphite iron, malleable iron, and white iron. This article discusses melting, pouring, desulfurization, inoculation, alloying, and melt treatment of these major ferrous alloys as well as carbon and alloy steels. It explains the principles of solidification by describing the iron-carbon phase diagram, and provides a pictorial presentation of the basic microstructures and processing steps for cast irons.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003170
EISBN: 978-1-62708-199-3
... Abstract Metal casting is the manufacturing method in which a metal or an alloy is melted, poured into a mold, and allowed to solidify. Typical uses of castings include municipal hardware, water distribution systems (pipes, pumps, and valves), automotive components (engine blocks, brakes...
Abstract
Metal casting is the manufacturing method in which a metal or an alloy is melted, poured into a mold, and allowed to solidify. Typical uses of castings include municipal hardware, water distribution systems (pipes, pumps, and valves), automotive components (engine blocks, brakes, steering and suspension components, etc.), prosthetics, and gas turbine engine hardware. This introduction explains the steps involved in making a casting using a simplified flow diagram, and discusses the ferrous and nonferrous alloys used for metal casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005196
EISBN: 978-1-62708-187-0
... and water cooling systems for induction furnaces. Furnace operators can increase the power supply utilization by the use of mechanical skimmers. The article describes the various lining materials used in induction furnaces, namely, silica, alumina, and magnesia. The crucible wall scrapers, ramming mixes...
Abstract
This article describes the principles and classifications of induction furnaces. The classifications of induction furnaces are coreless and channel. The electromagnetic stirring action in these furnaces is reviewed. The article provides information on the various power supplies and water cooling systems for induction furnaces. Furnace operators can increase the power supply utilization by the use of mechanical skimmers. The article describes the various lining materials used in induction furnaces, namely, silica, alumina, and magnesia. The crucible wall scrapers, ramming mixes, and lining push-out device used in induction furnaces are also reviewed. The article concludes with a discussion on batch operation and tap-and-charge operation, two distinct ways of operating a coreless induction furnace.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005902
EISBN: 978-1-62708-167-2
... of the inductor coil, a cooling cylinder enclosing it, the closed iron core, the inductor casing, and the refractory lining in channel form, which takes up the melt. The coils for inductors from medium-power outputs (>250 kW) are cooled primarily by water. The steel casing also is cooled by water in high...
Abstract
An induction channel furnace consists of a tiltable furnace vessel with refractory lining onto which an inductor or several inductors are flange mounted. This article includes a discussion on the design for holding and dosed-pouring of the iron melts, design for melting the materials, and refractory lining of furnace vessel. It provides information on the structural changes and refractory lining of channel inductors. The article also includes a discussion on power supplies deployed in channel inductor furnaces: line-frequency power supply for melting iron, and converter power supply for melting nonferrous metals. It concludes with an overview of the inductor cooling circuit.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001005
EISBN: 978-1-62708-161-0
... the previous air furnace, cupola-air furnace, or cupola-electric furnace systems. The sulfur and nitrogen contents of the charge carbon used in melting must be high enough to provide 0.07 to 0.09% S and 80 to 120 ppm N in the iron. The sulfur reduces the surface tension and improves fluidity. The nitrogen...
Abstract
Malleable iron possesses considerable ductility and toughness because of its combination of nodular graphite and a low-carbon metallic matrix. The desired formation of temper carbon in malleable irons has two basic requirements. First, graphite should not form during the solidification of the white cast iron, and second, graphite must also be readily formed during the annealing heat treatment. These two metallurgical requirements influence the useful compositions of malleable irons and the melting, solidification, and annealing procedures. There are two basic types of malleable iron: blackheart and whiteheart. This article considers only the blackheart type and describes the metallurgical factors of malleable iron. It discusses the mechanical properties of pearlitic and martensitic malleable irons. The article provides additional information on the properties and heat treatment of ferritic, pearlitic, and martensitic malleable irons. The article lists some of the typical applications of malleable iron castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
.... Therefore, the cathode material is liquid at the arc attachment point even with water cooling at the rear of the cathode. For this reason, oxidizing gases generally cannot be used in direct contact with the tungsten tip. Argon shielding is one solution. Further, it should be kept in mind that portions...
Abstract
Plasma melting is a material-processing technique in which the heat of thermal plasma is used to melt a material. This article discusses two typical design principles of plasma torches in the transferred mode: the tungsten tip design and the hollow copper electrode design. It describes the sources of atmospheric contamination in plasma melting furnaces and their control measures. The equipment used in plasma melting furnaces are also discussed. The article provides a detailed discussion on various plasma melting processes, such as plasma consolidation, plasma arc remelting, plasma cold hearth melting, and plasma casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005326
EISBN: 978-1-62708-187-0
... carbon. Cupola malleable iron is a blackheart malleable iron that is produced by cupola melting and is used for pipe fittings and similar thin- section castings. Because of its low strength and ductility, cupola malleable iron is usually not specified for structural applications. Pearlitic malleable iron...
Abstract
Malleable iron is a cast ferrous metal that is initially produced as white cast iron and is then heat treated to convert the carbon-containing phase from iron carbide to a nodular form of graphite called temper carbon. This article provides a discussion on the melting practices, heat treatment, microstructure, production technologies, mechanical properties, and applications of ferritic, pearlitic, and martensitic malleable irons.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006333
EISBN: 978-1-62708-179-5
... is produced in the United States. This material has a matrix of ferrite with interspersed nodules of temper carbon. Cupola malleable iron is a blackheart malleable iron that is produced by cupola melting and is used for pipe fittings and similar thin- section castings. Because of its low strength...
Abstract
Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. This article discusses melting practices such as batch cold melting and duplexing, and their control mechanisms. It schematically illustrates the microstructure of annealed ferritic malleable iron, which is characterized by microstructures consisting of uniformly dispersed fine particles of free carbon in a matrix of ferrite or tempered martensite. The article describes the digital solidification analysis technology, simulation technologies, and smart engineering for the production of malleable iron. It provides information on the applications of ferritic and pearlitic malleable irons.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005195
EISBN: 978-1-62708-187-0
... on the arc melting of iron and EAF steelmaking. chemical analysis cupola furnaces deoxidation electric arc furnaces ferrous alloys oxidation steel furnace shell water-cooling system preheat and furnace scrap burners heat reduction THE MELTING OF STEEL is performed in both arc furnaces...
Abstract
This article focuses on the construction, operation of electric arc furnaces (EAF), and their auxiliary equipment in the steel foundry industry. It provides information on the power supply of EAF and discusses the components of the EAF, including the roof, furnace shell, spout and tap hole, water-cooling system, preheat and furnace scrap burners, and ladles. The article describes the acid and basic steelmaking practices. It discusses the raw materials used, oxidation process, methods of heat reduction, and deoxidation process in the practices. The article provides a discussion on the arc melting of iron and EAF steelmaking.
1