Skip Nav Destination
Close Modal
By
ASM International Materials Life-Cycle Analysis Committee, Hans H. Portisch, Steven B. Young, John L. Sullivan, Matthias Harsch ...
Search Results for
waste recycling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 183 Search Results for
waste recycling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003050
EISBN: 978-1-62708-200-6
... and as raw materials for other processes. This article describes the recycling of in-process scrap and industrial wastes (fly ash, red mud, metallurgical waste, and other waste products), and applications of these recycled products. It focuses on environmental regulations such as Resource Conservation...
Abstract
Ceramic and glass manufacturers take environmental regulations into consideration during all stages of the product cycle, from research and development to purchasing, processing, end use, and disposal. Ceramic and glass products are finding application in the construction industry and as raw materials for other processes. This article describes the recycling of in-process scrap and industrial wastes (fly ash, red mud, metallurgical waste, and other waste products), and applications of these recycled products. It focuses on environmental regulations such as Resource Conservation and Recovery Act and Clean Air Act. The Clean Air Act requires all states to meet minimum emissions standards for nitrogen-oxygen compounds, volatile organic compounds, and carbon monoxide.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001053
EISBN: 978-1-62708-161-0
... additional steps, including secondary nickel refining, degreasing, and separation of metallurgical wastes. iron scrap scrap demand scrap processor scrap recycling industry stainless steel scrap superalloy scrap metal recycling RECYCLING can be simply defined as the use of a material over...
Abstract
A significant amount of the worldwide demand for metals is met with recycled materials acquired by metal producers in the form of purchased scrap. This article focuses primarily on the methods and technology used to process and repurpose the vast amounts of purchased scrap that recirculate in the industrial supply chain. It describes the U.S. market for iron and steel scrap, providing information on scrap use by industry, factors influencing demand, and the purchased scrap supply. Iron and steel recycling is discussed separately from stainless steel and superalloy recycling in this article, as the scrap industry treats them differently. The scrap processing of iron involves collection, separation and sorting, size reduction and compaction, detinning, blending, and incineration. The recycling of stainless steels and superalloys follows the same process, but requires several additional steps, including secondary nickel refining, degreasing, and separation of metallurgical wastes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003471
EISBN: 978-1-62708-195-5
..., and thermal processes. Thermoplastic-matrix composites are recycled by regrinding, compounding/blending and reprocessing. The article concludes with discussion on the properties of recycled composite fibers. blending industrial waste disposal polymer-matrix composites recycling regrinding...
Abstract
This article begins with a discussion on the driving forces for recycling composites. It reviews the recycling process of thermoset-matrix composites and thermoplastic-matrix composites. The recycling of thermoset-matrix composites includes regrind, chemical, energy recovery, and thermal processes. Thermoplastic-matrix composites are recycled by regrinding, compounding/blending and reprocessing. The article concludes with discussion on the properties of recycled composite fibers.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003013
EISBN: 978-1-62708-200-6
... materials of high quality. Primary recycling of clean, homogeneous scrap plastics is an established practice in the plastics industry, and it will not be considered in this article. Secondary Recycling Secondary recycling is the reprocessing of scrap or waste plastics by one or more mechanical...
Abstract
This article discusses postconsumer plastics recyclate quantities, the classification of plastics recycling into primary, secondary, tertiary, and quaternary categories, and how the life cycle of plastics is affected by recycling. The recycling processes of polyethylene terephthalate (PET), which accounts for the largest percentage of plastic recycling, high-density polyethylene (HDPE) plastics, the other large-volume plastic recyclate, as well as vinyl resins and polycarbonate resins are described. The life cycle of plastics has four phases: poly formation, part fabrication, product service, and disposal. Landfilling is still the primary method of final disposal, and incineration is another option, but recycling has become a viable alternative. The article presents a comparison between secondary and tertiary recycling.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003470
EISBN: 978-1-62708-195-5
... of polymer and metal matrix composites. closed loop recycling industrial waste disposal metal matrix composites open loop recycling polymer matrix composites recycling THE RECYCLABILITY of all materials, components, and systems has gained increased international emphasis...
Abstract
This article provides an introduction to the concepts discussed in the articles under the Section “Recycling and Disposal of Composites” in ASM Handbook, Volume 21: Composites. This Section presents the reader the most recent developments in the open-and closed-loop recycling of polymer and metal matrix composites.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003223
EISBN: 978-1-62708-199-3
... step in the LCA process is to identify potential improvement pathways. design for recycling environmental burdens life-cycle analysis product design scrap AS LANDFILLS CLOSE and costs of waste disposal increase, manufacturers of industrial and consumer products face a new challenge...
Abstract
Product design greatly influences the recycling and reuse of manufacturing materials. This article presents a design for recycling strategy based on ease of disassembly, minimizing process scrap, using readily recyclable materials, and labelling or otherwise identifying parts. It also discusses the concept of life-cycle analysis (LCA), a quantitative accounting of the environmental and economic costs of using a given material and the energy required to make, distribute, operate, and eventually dispose of the host product and its constituent materials. An important but often overlooked step in the LCA process is to identify potential improvement pathways.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001240
EISBN: 978-1-62708-170-2
..., reporting, and recordkeeping, and the liability exposure of the waste generator increases. One solution that helps minimize the impact of all these costs is to set up a recycling program that extends the life of the fluid, therefore decreasing the amount of environmental pollution and eliminating some...
Abstract
Grinding is an extremely complex process that requires the consideration of a number of elements in order to make a reasonably adroit initial selection of a fluid or fluids for a manufacturing plant. In addition, the disposal of grinding wastes must meet the minimum requirements as recommended by the federal Environmental Protection Agency (EPA) and Resource Conservation and Recovery Act (RCRA) regulations. This article explains the selection considerations of such fluids, as well as the applications and environmental issues related to the grinding processes.
Book Chapter
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002433
EISBN: 978-1-62708-194-8
... pertaining to co-product generation, recycling, and waste treatment processes are clearly explained. Example of a life-cycle inventory for an unspecified product Table 1 Example of a life-cycle inventory for an unspecified product Substance Amount Inputs Energy from fuels, MJ Coal...
Abstract
Life-cycle engineering is a part-, system-, or process-related tool for the investigation of environmental parameters based on technical and economic measures. This article focuses on life-cycle engineering as a method for evaluating impacts. It describes the four steps of life-cycle analysis, namely, goal definition and scoping, inventory analysis, impact assessment and interpretation, and improvement analysis. The article discusses the applications of life-cycle analysis results and presents a case history of life-cycle analysis of an automobile fender.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002438
EISBN: 978-1-62708-194-8
... sustainable use of renewable natural resources, including the protection of wildlife habitats, open spaces, and wilderness. Reduction and disposal of waste: Companies will minimize waste and recycle wherever possible. Wise use of energy: Companies will use environmentally safe energy sources...
Abstract
This article discusses Allenby's two streams for environmental aspects of design: generic and specific concerns. Generic concerns include guidelines that provide the structure in which specific techniques can be developed and used. Specific methods are environmentally responsible for design and specific information that engineers can use. These methods include life cycle assessment, environmental impact assessment, quality function deployment, design for “X”, failure modes and effects analysis, and design for disassembly.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003222
EISBN: 978-1-62708-199-3
...: scrap generated during manufacturing, including rejected parts; same as prompt scrap Post-consumer scrap: scrap generated by recycling discarded products Recyclables: municipal-waste generated post-consumer scrap Salvaging metal from post-consumer scrap is more complex in terms...
Abstract
This article focuses on the recycling of metals including iron and steel, stainless steel, superalloys, nickel, aluminum, copper, precious metals, lead, magnesium, tin, titanium, and zinc. It provides information on the identification and sorting of scrap metals and discusses the equipment and procedures used for small-scale and large-scale scrapping operations.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003472
EISBN: 978-1-62708-195-5
... MMCs. aluminum matrix composites continuous reinforced aluminum metal matrix composites discontinuous SiC reinforced aluminum metal matrix composites industrial waste disposal recycling THE NEED TO RECYCLE metal-matrix composites (MMCs) to reduce cost and meet environmental goals becomes...
Abstract
This article focuses on the techniques used in recycling of aluminum metal matrix composites (MMCs) such as discontinuous SiC reinforced aluminum MMCs and continuous reinforced aluminum MMCs. It provides a discussion on the properties of recycled aluminum MMCs and disposal of aluminum MMCs.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001118
EISBN: 978-1-62708-162-7
... to increase all forms of recycling activity. In 1988, the United States generated 145 million metric tons (160 million tons) of waste. It is anticipated that it may produce more than 180 million metric tons (200 million tons) per year by the year 2000. In 1979, the nation had 18,500 landfills in operation...
Abstract
Many nonferrous metals, including aluminum, nickel, copper, and others, are among the few materials that do not degrade or lose their chemical or physical properties in the recycling process. As a result, these metals can be recycled an infinite number of times. This article focuses on the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006484
EISBN: 978-1-62708-207-5
... recycling became more prevalent, because the source aluminum is now mostly on the ground rather than in it. Secondary aluminum, produced from scrap and waste materials, currently comprises nearly half of the aluminum produced in Europe and North America, and the fraction continues to grow. Metal production...
Abstract
Aluminum possesses many characteristics that make it highly compatible with recycling. Production of aluminum from scrap has a number of advantages. This article discusses the technology for the recovery, sorting, and remelting of aluminum. It describes the collection and acquisition of aluminum scrap in transportation, packaging, electrical and electronic, and building and construction sectors. The article reviews the technologies used to accomplish comminution for aluminum: shearing, knife shredding, and swing-hammer shredding. It provides a description of the devices used in scrap sorting, such as hand sorting, air classification, magnetic separation, eddy-current separation, heavy-media separation, and sensor-based sorting. The article also describes thermal processing, refining and casting, and dross processing of aluminum. It provides information on reverberatory and electric furnaces used for melting aluminum.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001321
EISBN: 978-1-62708-170-2
..., and labeling of waste. It also controls underground storage tanks, sumps, pollution prevention, recyclers, and transporters of waste. The discussion of RCRA in this section is limited to very simple concepts, and the reader should consult a regional EPA office or equivalent state agency for detailed...
Abstract
This article describes selected U.S. environmental statutes and regulations that are pertinent to material surface finishers. It provides information on the applicability, requirements, and permitting conditions of the Clean Air Act, the Resources Conservation and Recovery Act, the Superfund Amendments and Reauthorization Act, and the Clean Water Act.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004150
EISBN: 978-1-62708-184-9
..., and may also cause damage to other components of the biota, for example trees. In addition, the chemical impurities play a major role in the corrosion of the fuel systems. The alternative fuels are various; wood, and specifically wood waste from the timber industry, is a major resource. Agricultural...
Abstract
The primary fossil fuels are generally defined as coal, oil, natural gas, tar sands, and shale oil. This article discusses the characteristics and the types of fuels used in fossil and fuel industries. It describes the energy conversion in fuels and outlines the efficiency of a heat engine with the help of the Carnot equation.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004137
EISBN: 978-1-62708-184-9
... can be used in such applications as mist elimination, where temperatures are lower. For example, polypropylene can withstand 80 °C (175 °F). Rubber linings can also be used where temperatures are suitable and mechanical damage can be avoided. Waste Incineration In a number of ways, the problems...
Abstract
Corrosion problems and materials selection for emissions control equipment can be difficult because of varied corrosive compounds present and the severe environments encountered. This article discusses the selection of materials for construction of flue gas desulfurization systems. It addresses the problems associated with materials for incinerator off-gas treatment equipment. The off-gases can be classified according to their corrosiveness as: industrial chemical, hospital, municipal solid, and sewage sludge. The article provides information on the selection of materials for the three most common types of dust collection equipment used in bulk solids processing, namely, fabric filters, electrostatic precipitators, and wet scrubbers. It also discusses a wide variety of corrosion problems encountered in chemical and pharmaceutical industries.
Book Chapter
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004161
EISBN: 978-1-62708-184-9
... using coal as a primary fuel. The combustion process—cyclone, pulverized-coal, or fluidized-bed firing—determines the type and characteristics of the ash. Waste ash, fly ash, and bottom ash are generated in large volumes and must be dealt with in an environmentally acceptable manner. Fly ash comprises...
Abstract
Ash handling is a major challenge for utilities and industries using coal as a primary fuel. This article discusses the operating problems associated with conventional fly ash/bottom ash handling systems. It describes the two types of fly ash systems, namely, dry and wet fly ash systems. The article presents the ways to minimize operating problems that occur due to corrosion, erosion, scaling, and plugging.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001091
EISBN: 978-1-62708-162-7
... and impurity contents, depending upon the processing step from which they result. Gallium-arsenide-based scrap, rather than metallic gallium, represents the bulk of the scrap that is recycled. During the processing of gallium metal into a GaAs device, waste is generated during the GaAs ingot formation...
Abstract
Gallium-base components can be found in a variety of products ranging from compact disk players to advanced military electronic warfare systems, owing to the factor that it can emit light, has a greater resistance to radiation and operates at faster speeds and higher temperatures. This article discusses the uses of gallium in optoelectronic devices and integrated circuits and applications of gallium. The article discusses the properties and grades of gallium arsenide and also provides information on resources of gallium. The article talks about the recovery techniques, including recovery from bauxite, zinc ore and secondary recovery process and purification. The article briefly describes the fabrication process of gallium arsenide crystals. Furthermore, the article gives a short note on world supply and demand of gallium and concludes with research and development on gallium arsenide integrated circuits.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003415
EISBN: 978-1-62708-195-5
... a maximum of 1,000,000 parts per annum using several molding tools in parallel for one application. Cost-Effectiveness The cost effectiveness of a compression molded application depends on several factors, such as hardware amortization, raw material and energy costs, recycling of trimmed waste...
Abstract
Compression molding is the single largest primary manufacturing process used for automotive composite applications. This article provides an overview of the compression molding process. It describes the basic design, materials, and processing equipment of three main groups of composite materials, namely, glass-fiber-mat-reinforced thermoplastics, long-fiber-reinforced thermoplastics, and sheet molding compounds. The article also presents information on the application examples and market volume of compression molding.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006960
EISBN: 978-1-62708-439-0
... and wastes. The article discusses additive manufacturing hazards, which are broken down into material hazards, equipment/process hazards, and facility hazards. The environmental impact of AM and the development of EH&S standards for AM also are covered in the article. additive manufacturing...
Abstract
This article provides an overview of the concepts of environmental, health, and safety (EH&S) risk incidents, then discusses these concepts relative to additive manufacturing (AM): the multiple intrants, process parameters, and equipment, as well as the resulting products and wastes. The article discusses additive manufacturing hazards, which are broken down into material hazards, equipment/process hazards, and facility hazards. The environmental impact of AM and the development of EH&S standards for AM also are covered in the article.
1