Skip Nav Destination
Close Modal
Search Results for
void volume
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 230 Search Results for
void volume
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006445
EISBN: 978-1-62708-190-0
... and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed...
Abstract
The potential for introducing defects during processing becomes greater as the relative density of pressed and sintered powder metallurgy (PM) parts increases and more multilevel parts with complex geometric shapes are produced. This article discusses the potential defects in pressed and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography, and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density determination, and visual inspection.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001290
EISBN: 978-1-62708-170-2
... shown in the near-surface region is a void that is formed in most metallic depositions at thermal energies. The random nature of the positions along the surface, where the vapor atoms land, coupled with the low mobility of the atoms after impact, leads to void formation. The upper left portion of Fig...
Abstract
Ion-beam-assisted deposition (IBAD) refers to the process wherein evaporated atoms produced by physical vapor deposition are simultaneously struck by an independently generated flux of ions. This article discusses the energy utilization of this process. It describes the physical and chemical processes occurring at the film-vacuum interface during IBAD and dual-ion-beam sputtering with illustrations. The article also reviews the methods used for large-area, high-volume implementation of IBAD and the modes of film formation for IBAD. It contains a table that presents information on deposition and synthesis of inorganic compounds by IBAD and concludes with a discussion on the improved coating properties, advantages, limitations, and applications of IBAD.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003843
EISBN: 978-1-62708-183-2
... always the primary required property. A normal strength concrete with very high durability and very low permeability is considered to have high-performance properties. It has been demonstrated that 40 MPa (6 ksi) HPC for bridges could be economically made while meeting durability factors for air-void...
Abstract
Portland cement concrete has low environmental impact, versatility, durability, and economy, which make it the most abundant construction material in the world. This article details the types and causes of concrete degradation. Concrete can be degraded by corrosion of reinforcing steel and other embedded metals, chlorides, carbonation, galvanic corrosion, chemical attack, alkali-aggregate reaction, abrasion, erosion, and cavitation as well as many other factors. The article addresses the durability of concrete by two approaches, namely, the prescriptive approach and the performance approach. In the former, designers specify materials, proportions, and construction methods based on fundamental principles and practices that exhibit satisfactory performance. In the latter, designers identify functional requirements such as strength, durability, and volume changes and rely on concrete producers and contractors to develop concrete mixtures to meet those requirements.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009016
EISBN: 978-1-62708-187-0
... contraction is shown: liquid shrinkage, solidification shrinkage, and solid contraction. Source: Ref 1 Fig. 2 Schematic of sequence of solidification shrinkage in an iron cube. (a) Initial liquid metal. (b) Solid skin and formation of shrinkage void. (c) Internal shrinkage. (d) Internal shrinkage...
Abstract
Riser design deals with the development of suitable reservoirs of feed metal in addition to the desired casting shape. The role of an engineer in designing risers can be stated simply as making sure that risers will provide the feed metal: in the right amount, at the right place, and at the right time. This article addresses these considerations in the context of feed metal volume, riser location, and duration of liquid feed metal. It discusses the three types of feeding systems, such as riser sleeves, topping compounds, and breaker cores, that are used in riser design. The factors in riser size, riser necks, and breaker cores are discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003051
EISBN: 978-1-62708-200-6
... bonding. Firing of the object causes interparticle reaction and partial fusion of the mass. The molten substance assists in pore elimination by drawing the particles together and filling void spaces. The undesirable small pores are the first to disappear. Thus, the extent of fusion determines pore...
Abstract
Traditional ceramics, one of two general classes, are commonly used in high-volume manufacturing to make building materials, household products, and various industrial goods. Although there is a tendency to equate traditional ceramics with low technology, sophisticated processes and advanced manufacturing techniques are often used where these materials are employed. This article examines several traditional ceramics, including structural clay, whiteware, glazes, enamels, portland cements, and concrete. It also provides a detailed account of fabrication methods, properties, and applications. As an example, common applications for structural clay include facing materials, load-bearing units, pavers, and ceramic tiles.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005186
EISBN: 978-1-62708-187-0
... Abstract Casting is one of the most economical and efficient methods for producing metal parts. In terms of scale, it is well suited for everything from low-volume, prototype production runs to filling global orders for millions of parts. Casting also affords great flexibility in terms of...
Abstract
Casting is one of the most economical and efficient methods for producing metal parts. In terms of scale, it is well suited for everything from low-volume, prototype production runs to filling global orders for millions of parts. Casting also affords great flexibility in terms of design, readily accommodating a wide range of shapes, dimensional requirements, and configuration complexities. This article traces the history of metal casting from its beginnings to the current state, creating a timeline marked by discoveries, advancements, and influential events. It also lists some of the major markets where castings are used.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009021
EISBN: 978-1-62708-187-0
... entrapped air out through the mold walls. The result is voids and porosity. Thus, this 8-in.-long casting as originally designed, with a 0.060-in. wall thickness and five cross members, is incapable of being properly filled. The problem can be solved in at least three ways. First, the outer wall thickness...
Abstract
Thin sections save weight and thus contribute to a more favorable strength-to-weight ratio. By requiring a smaller volume of metal, thin walls may also lower casting costs, particularly when an expensive alloy is being poured. This article discusses the design problems in thin-wall steel sand castings, thin-wall aluminum and magnesium castings, thin-wall permanent mold castings, and thin-wall investment castings, with schematic illustrations.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003026
EISBN: 978-1-62708-200-6
... methods used to determine the following dielectric properties of plastics: dielectric breakdown voltage, dielectric strength, dielectric constant, dissipation factor, arc tracking resistance, insulation resistance, volume, and surface resistivity or conductivity. The test specifications and conditions...
Abstract
In terms of their electrical properties, plastics can be divided into thermosetting and thermoplastic materials, some of which are conductive or semiconductive. This article provides detailed information on factors that affect the property of plastics. It discusses the major test methods used to determine the following dielectric properties of plastics: dielectric breakdown voltage, dielectric strength, dielectric constant, dissipation factor, arc tracking resistance, insulation resistance, volume, and surface resistivity or conductivity. The test specifications and conditions, recommended by several U.S. and foreign testing organizations for characterizing the electrical properties of plastic materials are listed. The article describes the influence of these properties on selection of plastics for insulation application. An outline of the electromagnetic shielding and testing methods of electromagnetic interference are also provided. Designations, electrical properties, and applications of elastomers are tabulated.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005458
EISBN: 978-1-62708-196-2
..., and volume fractions) show, however, a lack of correspondence with existing creep models, such as that of Hull and Rimmer ( Ref 1 ). For example, in a diffusional void-growth model, a regular distribution of small voids is assumed to be situated on grain boundaries normal to the maximum tensile stress...
Abstract
Any model that describes the early stage of cavitation must therefore address experimental observations of continuous nucleation, cracklike interface cavities, cavity growth from nanometer-scale sizes, and debonding at particle interfaces and formation of large-faceted cavities. This article summarizes the microstructural details of the early stages of cavitation in metals for understanding the interface-constrained plasticity cavitation model. It discusses formulation, predictions and implications, involved in analysis of cavitation under constrained conditions.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005421
EISBN: 978-1-62708-196-2
... tension specimen. Various criteria for describing coalescence via such an internal necking process have been based on (1) a critical matrix-ligament strain, ε cr , (2) a critical stress, or (3) a critical void volume fraction. The first criterion is the one applied in most cases. The critical matrix...
Abstract
This article focuses on the modeling and simulation of cavitation phenomena. It summarizes the experimental observations of cavitation and reviews the modeling of cavity nucleation and growth. The article discusses the modeling of the cavity growth based on mesoscale and microscale under uniaxial versus multiaxial tensile-stress conditions. Mesoscale models incorporate the influence of local microstructure and texture on cavitation. The article outlines the descriptions of cavity coalescence and shrinkage. It also describes the simulation of the tension test to predict tensile ductility and to construct failure-mechanism maps.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003039
EISBN: 978-1-62708-200-6
... winding because large numbers of filaments can make handling easier. The fiber density is included so that the rule of mixtures equations involving fiber volume and resin volume can be used to evaluate void volume and theoretical mechanical values. Table 1 Glass fibers for filament winding (in order...
Abstract
Filament winding is a process that allows the precise lay-down of continuous reinforcement in predescribed patterns at a high rate of speed. This article discusses the filament winding process and includes a comparison to other compacting and curing processes. The article describes design factors, and techniques to produce aerodynamic surfaces, improve surface smoothness, and avoid slipping and bridging of filament. The article discusses tooling and the equipment used in the filament winding process, namely, mandrel design, winding machines, tensioners, and ovens.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006457
EISBN: 978-1-62708-190-0
... structural assemblies. (a) Skin splices. (b) Stiffener runout. (c) Bonded doublers. (d) Shear clip Variables such as voids (lack of bond), inclusions, or variations in glue line thickness are present in adhesive-bonded joints and will affect joint strength. This article addresses the problem of how to...
Abstract
Adhesive-bonded joints are extensively used in aircraft components and assemblies where structural integrity is critical. This article addresses the problem of how to inspect bonded assemblies so that all discrepancies are identified. It describes several inspection techniques and presents drawbacks and limitations of these techniques. Generic flaw types and flaw-producing mechanisms are listed in a table. The article discusses metal-to-metal defects, adherend defects, honeycomb sandwich defects, repair defects, and in-service defects. It reviews the methods applicable to the inspection of bonded structures, including visual inspection, ultrasonic inspection, X-ray radiography, and neutron radiography. The evaluation and correlation of inspection results are also discussed. The article concludes with information on the effects of ultrasonic wave interference in the ultrasonic inspection of adhesive-bonded joints.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004015
EISBN: 978-1-62708-185-6
... with aluminum extrusion and, as such, three broad categories of profiles have been established: Solid profiles: Extruded cross sections that do not incorporate enclosed or partially enclosed voids (Some examples of solid profiles are I-beams or C-channels; refer to Table 4 and related...
Abstract
Aluminum and aluminum alloys are very suitable for extrusion and many types of profiles can be produced from easily extrudable alloys. This article lists the basic characteristics of aluminum and its alloys. It tabulates the aluminum extrusion alloys by series and lists the typical applications for 6xxx series aluminum extrusions. The article discusses three broad categories of extrusion profiles: solid profile, hollow profile, and semi hollow profile. It provides information on weldability and machinability, which are often considered in profile design and product performance. The article discusses different aluminum extrusion processes, such as the direct extrusion process and the indirect extrusion process. It schematically illustrates the plotting of flow stress and extrudability for several types of aluminum alloys. The article concludes with information on the heat treatment and precipitation hardening for alloys, such as 2xxx, 6xxx, and 7xxx.
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.9781627081757
EISBN: 978-1-62708-175-7
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003228
EISBN: 978-1-62708-199-3
... integrity; laminations; hydrogen cracking Radiography Changes in density from voids, inclusions, material variations; placement of internal parts Can be used to inspect wide range of materials and thicknesses; versatile; film provides record of inspection Radiation safety requires precautions...
Abstract
This article reviews nondestructive testing (NDT) and inspection techniques, namely liquid penetrant, magnetic particle, ultrasonics, X-ray, eddy current, visual and radiography that are commonly used to detect and evaluate flaws or leaks in an engineering system. This article compares the merits and limitations of these techniques and describes the various uses of NDT, including leak detection, metrology, structure or microstructure characterization, stress-strain response determination, and rapid identification of metals and alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003045
EISBN: 978-1-62708-200-6
... volume, void content, and degree of cure are very difficult to relate to part performance because test panels are not totally representative of parts during the cure cycle. The use of trim tabs is a significant improvement on the in-process coupon method. A trim tab should be designed as a piece of...
Abstract
Ultrasonic inspection is a nondestructive technique that is useful in both quality control and research applications for flaw detection in fiber-reinforced composite materials. This article describes ultrasonic nondestructive analysis by outlining its three basic types of scans. It reviews the important quality control techniques used during the manufacture of composite components by analyzing tooling control, material control, pattern orientation control, and in-process control.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000623
EISBN: 978-1-62708-181-8
... is now structure insensitive, characterized by a rougher surface with dimples and voids. SEM, 700× (J.A. Ruppen and A.J. McEvily, University of Connecticut) Fig. 1121 Ductile overload fracture of a tensile specimen of Ti-6Al-4V ELI (ASTM F136, UNS R56401). The wrought alloy was annealed for 1...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of titanium alloys and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fracture surface, fatigue crack growth, intergranular fracture, crack propagation, ductile overload fracture, dimpled rupture, microvoid coalescence, and quasi-cleavage fracture of these alloys.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005348
EISBN: 978-1-62708-187-0
... induction degassing VIDP vacuum induction degassing and pouring VIM vacuum induction melting VIM/VID vacuum induction melting and degassing VOD vacuum oxygen decarburization (ladle metallurgy) VODC vacuum oxygen decarburization (converter metallurgy) VOID vacuum oxygen...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003209
EISBN: 978-1-62708-199-3
... metallurgical stages in the DB process. (a) Initial contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain-boundary diffusion of atoms to the voids and grain-boundary migration. (d) Third stage: volume...
Abstract
This article describes the mechanism, advantages and disadvantages, fundamentals, capabilities, variations, equipment used, and weldability of metals in solid-state welding processes, including diffusion bonding, explosion welding, friction welding, ultrasonic welding, upset welding, and deformation welding.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000600
EISBN: 978-1-62708-181-8
... 3 21 (a) This category includes fractures or failures due to design deficiencies, contamination by foreign particles, splitting of reinforcing fibers, cracks originating at corrosion pits during four-point bending, cracks initiating at internal defects or voids, overload by three-point...
Abstract
The Atlas of Fractographs contains more than 1,300 fractographs, corresponding to 30 materials, including common grades of iron and steel, nonferrous metals and alloys, composites, and polymers. This article serves as the table of contents, describing how the information in the Atlas is organized and how the fractographs are laid out. It also provides a summary of the various causes or modes of fracture, including cleavage, dimple rupture, fatigue fracture, and decohesion.