Skip Nav Destination
Close Modal
Search Results for
void content
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 191 Search Results for
void content
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003235
EISBN: 978-1-62708-199-3
... covers (radomes). This article focuses on the microwave inspection methods that were subsequently developed for evaluation of moisture content in dielectric materials; thickness measurements of thin metallic coatings on dielectric substrates; and detection of voids, delaminations, macroporosity...
Abstract
Microwaves (or radar waves) are a form of electromagnetic radiation with wavelengths between 1000 cm and 1 mm in free space. One of the first important uses of microwaves in nondestructive evaluation was for components such as waveguides, attenuators, cavities, antennas, and antenna covers (radomes). This article focuses on the microwave inspection methods that were subsequently developed for evaluation of moisture content in dielectric materials; thickness measurements of thin metallic coatings on dielectric substrates; and detection of voids, delaminations, macroporosity, inclusions, and other flaws in plastic or ceramic materials. It also discusses the advantages and disadvantages and the general approaches that have been used in the development of microwave nondestructive inspection.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006445
EISBN: 978-1-62708-190-0
... and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed...
Abstract
The potential for introducing defects during processing becomes greater as the relative density of pressed and sintered powder metallurgy (PM) parts increases and more multilevel parts with complex geometric shapes are produced. This article discusses the potential defects in pressed and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography, and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density determination, and visual inspection.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000600
EISBN: 978-1-62708-181-8
... Abstract The Atlas of Fractographs contains more than 1,300 fractographs, corresponding to 30 materials, including common grades of iron and steel, nonferrous metals and alloys, composites, and polymers. This article serves as the table of contents, describing how the information in the Atlas...
Abstract
The Atlas of Fractographs contains more than 1,300 fractographs, corresponding to 30 materials, including common grades of iron and steel, nonferrous metals and alloys, composites, and polymers. This article serves as the table of contents, describing how the information in the Atlas is organized and how the fractographs are laid out. It also provides a summary of the various causes or modes of fracture, including cleavage, dimple rupture, fatigue fracture, and decohesion.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006016
EISBN: 978-1-62708-172-6
..., and chemical contaminants. When inspecting concrete prior to coating installation, three areas of concern exist: surface roughness, moisture content in concrete, and acidity/alkalinity of the surface. The article provides information on the industry standards for assessing surface cleanliness. It...
Abstract
This article discusses the concepts of quality control (QC) and quality assurance (QA), and clarifies the differences and similarities in the roles and responsibilities of QC and QA personnel. It describes the inspection procedures used to verify proper surface preparation and installation of the protective coating/lining system. Prior to beginning surface-preparation operations, many specifications will require a presurface-preparation inspection to verify the correction of fabrication defects and removal of surface contamination such as grease, oil, cutting compounds, lubricants, and chemical contaminants. When inspecting concrete prior to coating installation, three areas of concern exist: surface roughness, moisture content in concrete, and acidity/alkalinity of the surface. The article provides information on the industry standards for assessing surface cleanliness. It details postcoating application quality requirements, including measuring of dry-film thickness, assessing intercoat cleanliness, verifying minimum and maximum recoat intervals, performing holiday/pinhole detection, conducting cure/hardness testing, and assessing adhesion of the applied coating system.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and...
Abstract
Wear of metals occurs by plastic displacement of surface and near-surface material, and by detachment of particles that form wear debris. This article presents a table that contains the classification of wear. It describes the testing and evaluation of wear and talks about the abrasive wear, lubrication and lubricated wear, and selection of steels for wear resistance. The article discusses the effect of alloying elements, composition, and mechanical properties of carbon and low-alloy steels at elevated temperatures. It talks about the fatigue resistance characteristics of steels, and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and heat treatment on fracture toughness of steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003045
EISBN: 978-1-62708-200-6
... volume, void content, and degree of cure are very difficult to relate to part performance because test panels are not totally representative of parts during the cure cycle. The use of trim tabs is a significant improvement on the in-process coupon method. A trim tab should be designed as a piece of...
Abstract
Ultrasonic inspection is a nondestructive technique that is useful in both quality control and research applications for flaw detection in fiber-reinforced composite materials. This article describes ultrasonic nondestructive analysis by outlining its three basic types of scans. It reviews the important quality control techniques used during the manufacture of composite components by analyzing tooling control, material control, pattern orientation control, and in-process control.
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.9781627081757
EISBN: 978-1-62708-175-7
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003141
EISBN: 978-1-62708-199-3
... elemental fines where the void content must be minimal—the residual chloride content is a major factor in the amount of residual porosity of the final product. Contaminants are key in terms of the final fatigue properties that will be obtained (they are detrimental to the fatigue performance). Titanium...
Abstract
Titanium metal passes through three major steps during processing from ore to finished product: reduction of titanium ore to sponge (porous form), melting of sponge and scrap to form ingot, and remelting and casting into finished shape. This article describes primary fabrication, including all operations that convert ingot into general mill products, such as billet, bar, plate, sheet, strip, tube, and wire. The section on secondary fabrication describes processes such as die forging, extrusion, hot and cold forming, machining, chemical milling, and joining. The article presents a short note on powder metallurgy products of titanium. Casting processes and properties are covered in the final section.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003135
EISBN: 978-1-62708-199-3
...; the greater the void content (lower the density), the lower the conductivity. Electrical conductivity of pure copper parts pressed at moderate pressures of 205 to 250 MPa (15 to 18 tsi) and sintered at 800 to 900 °C (1500 to 1650 °F) varies from 80 to 90% International Annealed Copper Standard (IACS...
Abstract
This article discusses the characteristics, properties, and production methods of copper powders and copper alloy powders. Bulk of the discussion is devoted to production and applications of powder metallurgy (P/M) parts, including pure copper P/M parts, bronze P/M parts, brass and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003010
EISBN: 978-1-62708-200-6
... products, which are derived from epoxies, are solids that may be useful as modifiers in composite applications. They are known commercially as phenoxy resins and have an insignificant epoxy content. The use of epoxy for composite applications can be generally classified into three areas: high...
Abstract
A thermosetting resin, or thermoset, is a synthetic organic polymer that cures to a solid, infusible mass by forming a three-dimensional network of covalent chemical bonds. Significant applications include construction and thermoset engineering plastics. This article discusses the general and family characteristics of thermosetting resin families, including allyls, aminos (urea formaldehyde and melamine formaldehyde), cyanates, epoxies, polybenzimidazoles, unsaturated polyesters, thermoset polyimides, phenolics, and vinyl esters. It also explains processing methods, including curing and curing agents. The article provides descriptions of commercial product forms and the wide array of applications of thermosetting resins. It also tabulates the performance properties (mechanical, thermal, electrical and chemical resistance) of some families of unfilled or unreinforced thermosetting resins and reinforced or filled grades.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003020
EISBN: 978-1-62708-200-6
... high-performance aircraft components. One process uses an RTM technique to impregnate a highly reinforced preform, which is then moved into a high-pressure autoclave, in which heat and pressure are used to reduce void content and to cure the part. Although this process has only low-volume capabilities...
Abstract
Resin transfer molding (RTM) and structural reaction injection molding (SRIM) are two similar processes that are well suited to the manufacture of large, complex, and high-performance structures. This article discusses the similarities and differences of RTM and SRIM processes and the unique design considerations with respect to the physical properties, geometry, surface quality, process economics, equipment, and tooling of a component that should be considered in choosing RTM or SRIM over other competing processes for fabricating reinforced components.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... stainless steel. Marble’s etch Creep is caused by a combination of stress and temperature that exceeds the long-term strength limits of the material. The most severe form of creep is identified by voids forming at the grain boundaries. These voids appear in a zigzag pattern at an advanced stage. In...
Abstract
Visual examination, using the unaided eye or a low-power optical magnifier, is typically one of the first steps in a failure investigation. This article presents the guidelines for selecting samples for scanning electron microscope examination and optical metallography and for cleaning fracture surfaces. It discusses damage characterization of metals, covering various factors that influence the damage, namely stress, aggressive environment, temperature, and discontinuities.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004015
EISBN: 978-1-62708-185-6
...) 1350 160 1060 135 1100 135 3003 120 6063 100 6061 60 2011 35 5086 25 2014 20 5083 20 2024 15 7075 9 7178 8 In general, the higher the alloy content and strength, the greater the difficulty of extrusion and the lower the extrusion rate. The easily...
Abstract
Aluminum and aluminum alloys are very suitable for extrusion and many types of profiles can be produced from easily extrudable alloys. This article lists the basic characteristics of aluminum and its alloys. It tabulates the aluminum extrusion alloys by series and lists the typical applications for 6xxx series aluminum extrusions. The article discusses three broad categories of extrusion profiles: solid profile, hollow profile, and semi hollow profile. It provides information on weldability and machinability, which are often considered in profile design and product performance. The article discusses different aluminum extrusion processes, such as the direct extrusion process and the indirect extrusion process. It schematically illustrates the plotting of flow stress and extrudability for several types of aluminum alloys. The article concludes with information on the heat treatment and precipitation hardening for alloys, such as 2xxx, 6xxx, and 7xxx.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003839
EISBN: 978-1-62708-183-2
... SiC particles can affect void content ( Ref 89 ), dislocation density ( Ref 90 ), and the precipitation of active phases ( Ref 91 ) in aluminum matrices. Certain solution heat treatments and high extrusion ratios improved corrosion resistance of a 20 vol% SiC P /7091 Al MMC ( Ref 89 ). Extrusion...
Abstract
This article begins with the discussion on the background of metal-matrix composites (MMC) and moves into a broad description of the general parameters affecting the corrosion of MMC. It discusses the primary sources of MMC corrosion that include galvanic corrosion between MMC constituents, chemical degradation of interphases and reinforcements, microstructure-influenced corrosion, and processing-induced corrosion. The article elaborates on the corrosion behavior of specific aluminum, magnesium, titanium, copper, stainless steel, lead, depleted uranium, and zinc MMCs systems. It concludes with a description on the corrosion control of MMCs using protective coatings and inhibitors.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005192
EISBN: 978-1-62708-187-0
... contents in the last liquid to solidify are high. This mechanism is supported by the observation that the voids in the casting are normally distributed along the grain boundaries, which are the last parts to solidify. Other gases that can cause porosity are sulfur dioxide and carbon monoxide, which also...
Abstract
This article reviews the solubilities of the common gases present in ferrous metals, such as cast irons, and nonferrous metals, such as aluminum, copper, magnesium, and their alloys. The kinetics of the relevant reactions, reactions during solidification, and possible methods of control or removal of the dissolved gases are discussed. The most common method for removing hydrogen from aluminum, copper, and magnesium is inert gas flushing. The article concludes with a discussion on overcoming gas porosity in ferrous and nonferrous metals.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005967
EISBN: 978-1-62708-166-5
... stages. The most noticeable feature of the crystal structure is the degree of tetragonal distortion of martensite, which directly affects its specific volume ( Fig. 6 ). Usually, when the carbon content of steel is below 0.2 %, carbon atoms have a disordered distribution, and the degree of tetragonal...
Abstract
Of the various thermal processing methods for steel, heat treating has the greatest overall impact on control of residual stress and on dimensional control. This article provides an overview of the effects of material- and process-related parameters on the various types of failures observed during and after heat treating of quenched and tempered steels. It describes phase transformations of steels during heating, cooling of steel with and without metallurgical transformation, and the formation of high-temperature transformation products on the surface of a carburized part. The article illustrates the use of carbon restoration on decarburized spring steels. Different geometric models for carbide formation are shown schematically. The article also describes the different microstructural features such as grain size, microcracks, microsegregation, and banding.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0006515
EISBN: 978-1-62708-200-6
... ultraviolet v workpiece velocity V volt V f volume fraction of fiber V m volume fraction of matrix V v volume fraction of void content VCDO vinyl cyclohexene diepoxide VHP vacuum hot pressing VI viscosity index VLS vapor feed gases...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005338
EISBN: 978-1-62708-187-0
... materials with various binders ( Ref 2 ). Other high-stability refractories such as zirconia, thoria, and yttria have also been used to help prevent contamination of the casting by mold ( Ref 3 , 4 ). To minimize the contamination of the zirconium, investment casting includes controlling the ash content of...
Abstract
This article describes typical foundry practices used to commercially produce zirconium castings. The foundry practices are divided into two sections, namely, melting and casting. The article discusses various melting processes, such as vacuum arc skull melting, induction skull melting, and vacuum induction melting, and various casting processes, such as rammed graphite casting, static and centrifugal casting, and investment casting. It explains the evaluation and testing of the process. The article provides information on the mechanical and chemical properties of zirconium castings.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000610
EISBN: 978-1-62708-181-8
... extreme cases (such as this one) can lead to fracture of small index springs during coiling. SEM, 50× (J.H. Maker, Associated Spring, Barnes Group Inc.) Fig. 614 Surface of a “rock candy” fracture in a bloom of AISI type 302 stainless steel. An abnormally high silicon content and inadvertent...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of austenitic stainless steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the following: fatigue-crack fracture, rock candy fracture, cleavage fracture, brittle fracture, high-cycle fatigue fracture, fatigue striations, hydrogen-embrittlement failure, creep crack propagation, fatigue crack nucleation, intergranular creep fracture, torsional overload fracture, stress-corrosion cracking, and grain-boundary damage of these steels. The austenitic stainless steel components include spring wires, preheater-reactor slurry transfer lines and gas lines of coal-liquefaction pilot plants, oil feed tubes and suction couch rolls of paper machines, cortical screws and compression hip screws of orthopedic implants, and Jewett nails.