Skip Nav Destination
Close Modal
By
K. Subramanian
By
John A. Shields, Jr.
By
Steven G. Caldwell, H. Kestler, N. Reheis
By
Russell C. Buckley
By
T.J. Clark, R.C. DeVries
By
Kenneth E. Pinnow, Carl J. Dorsch
Search Results for
vitrified bonds
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 61
Search Results for vitrified bonds
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Effect of CBN concentration on wheel and workpiece properties. The data are...
Available to PurchasePublished: 01 January 1989
Fig. 25 Effect of CBN concentration on wheel and workpiece properties. The data are for a vitrified bond CBN wheel used to grind 52100 bearing steel. (a) Normalized metal removal rate values for plot of G ratio versus CBN concentration. (b) CBN concentration for plot of surface finish
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002152
EISBN: 978-1-62708-188-7
... of the abrasive grains in the rim is known as the concentration. This often determines the performance or behavior of superabrasive wheels. Bond Systems Four bond systems are typically used in superabrasive wheels: Resin Vitrified Metal Layered product The details of the constituents...
Abstract
Superabrasives collectively refer to the diamond and cubic boron nitride (CBN) abrasives used in grinding applications. This article discusses the classification of superabrasive wheels according to a variety of sizes and shapes, construction, concentration, and bond systems. It provides information on the applications of the superabrasive wheels depending on the factors of the grinding system. These factors include machine tool variables, work material, wheel selection, and operational factors. The article describes the methods available for superabrasive wheel truing in production grinding operations, namely, stationary tool, powered, and form truings. It reviews the truing methods, such as truing with abrasive wheels and hard ceramics, for batch production. The article explains practical methods available for dressing CBN wheels, namely, abrasive stick, abrasive-jet, slurry, and high-pressure waterjet dressing. It concludes with information on the conditioning process of the CBN wheel.
Book Chapter
Final Shaping and Surface Finishing of Ceramics
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
.... Current production methods for steel grinding normally use vitrified bonded wheels. There will be situations where diamond wheels of resin or metal bond are likely to be used in addition to vitrified bonded wheels for production grinding of ceramics. (The purpose and types of bonds are discussed...
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002151
EISBN: 978-1-62708-188-7
... be used at speeds higher than the rated speed shown on the grinding wheel.) Conventional abrasive grinding wheels are held together by two types of bond: vitrified and organic. Organic bonds are further divided into resin bond (and its subgroup plastic bond), rubber, and shellac. In addition...
Abstract
Metal is removed from the workpiece by the mechanical action of irregularly shaped abrasive grains in all grinding operations. This article discusses three primary components of grinding wheels, namely, abrasive (the cutting tool), bond (the tool holder), and porosity or air for chip clearance and/or the introduction of coolant. It describes the compositions and applications of coated abrasives and types of grinding fluids, such as petroleum-base and mineral-base cutting oils, water-soluble oils, synthetic fluids, semisynthetic fluids, and water plus additives. The article concludes with information on different types of grinding processes, namely, rough grinding, precision grinding, surface grinding, cylindrical grinding, centerless grinding, internal grinding, and tool grinding.
Image
Effect of truing infeed on truing force. A, resin and metal bond CBN wheel;...
Available to PurchasePublished: 01 January 1989
Fig. 35 Effect of truing infeed on truing force. A, resin and metal bond CBN wheel; B, vitrified CBN wheel; C, conventional vitrified wheel
More
Book Chapter
Grinding
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
... for grinding and grinding wheels. abrasive belt abrasives bonding finish grinding fluids grinding processes grinding recommendations grinding wheel metal bonds resin bonds tolerance truing vitrified bonds IN ALL GRINDING OPERATIONS, material is removed from the workpiece...
Abstract
In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations, standard marking systems, abrasives, and bonding types. It compares bonded wheel grinding with abrasive belt grinding. The article reviews the types of grinding fluids and discusses their importance in grinding operations. It describes the specific grinding processes and provides recommendations for grinding and grinding wheels.
Book Chapter
Thread Grinding
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002141
EISBN: 978-1-62708-188-7
... Resinoid and Vitrified Wheels Either vitrified or resinoid bond is used for thread grinding. Resinoid wheels remove stock more rapidly, but they are less rigid than vitrified wheels and deflect more readily. Therefore, resinoid wheels are usually used in high-production applications, while vitrified...
Abstract
This article discusses the various elements of thread grinding processes, including thread grinding machines, tolerances, wheel selection, grinding speed, and grinding fluids. It describes truing of grinding wheels and reviews the process applications. In addition, the article describes the five basic methods employed for cylindrical thread grinding, namely, single-rib wheel traverse grinding, multirib wheel traverse grinding, multirib wheel plunge grinding, multirib wheel skip-rib, or alternate-rib, grinding, and multirib wheel three-rib grinding. It also provides an overview of centerless grinding of threads and high-volume applications of thread grinding.
Book Chapter
Finishing Methods Using Multipoint or Random Cutting Edges
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
... and its content are also frequently identified. In coated abrasives, the type of backing material (paper, cloth, etc.) and the features of the coating (open, closed, supersize, etc.) are also identified. In grinding wheels, the bond matrix used (resin, vitrified, metal, etc.) is designated along...
Abstract
Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive products and materials, abrasive finishing processes, and the mechanisms of delivering the abrasives to the grinding or machining zone. Abrasive finishing processes, such as grinding, honing, superfinishing, microgrinding, polishing, buffing, and lapping, are discussed. The article presents a brief discussion on abrasive jet machining and ultrasonic machining. It concludes with a discussion on the four categories of factors that affect the abrasive finishing or machining: machine tool, work material, wheel selection, and operational.
Book Chapter
Surface Engineering of Refractory Metals and Alloys
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... grain Dry-wet Al 2 O 3 Al 2 O 3 Al 2 O 3 Al 2 O 3 Al 2 O 3 Al 2 O 3 Al 2 O 3 Grit size (b) 60 (F) 60 (SF) 100 (F) 465 (SF) 80 (SF) 203 (SF) 60 (T) 36 (T) Grade (b) H J (SF) I (F) K K R N L Structure (b) 8 8 (SF) 5 (F) 6 6 Normal 6 6 Bond Vitrified...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
Book Chapter
Secondary Operations and Quality Control for Refractory Metal Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006133
EISBN: 978-1-62708-175-7
... to completion without back-threading to avoid binding work-hardened chips. For larger holes, single-point threading may prove the best option. Tungsten heavy alloys are capable of excellent surface finishes when centerless or surface ground. Grinding is best performed with vitrified bond alumina or silicon...
Abstract
Refractory metals are typically processed from powders into ingots that are subsequently swaged into round bars or rolled into plates. Secondary operations are required to fabricate more complex refractory metal components. This article discusses two such secondary operations, namely, machining and joining processes for tungsten, tungsten heavy alloys, molybdenum, tantalum, niobium, and rhenium components. It describes the various types of metal joining processes, including mechanical fastening, brazing, and welding.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002188
EISBN: 978-1-62708-188-7
... threading. Thread Grinding External threads can be produced in group D-2 alloys (any condition) by form grinding. Aluminum oxide (150 to 320 grit) vitrified bond grinding wheels (medium hard, open structure) are used. The recommended grinding fluid is an oil of about 300 SUS viscosity at 20 °C (70 °F...
Abstract
Nickel-base alloys can be machined by techniques that are used for iron-base alloys. This article discusses the effects of distortion and microstructure on the machinability of nickel alloys. It tabulates the classification of nickel alloys based on machining characteristics. The article describes the machining operations performed on nickel alloys, such as turning, planing and shaping, broaching, reaming, drilling, tapping and threading, milling, sawing, and grinding. It provides information on the cutting fluids used in the machining of nickel alloys. The article also analyzes nontraditional machining methods that are suitable for shaping high-temperature, high-strength nickel alloys. These include electrochemical machining, electron beam machining, and laser beam machining.
Book Chapter
Surface Engineering of Nickel and Nickel Alloys
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... and corresponding surface speeds for various wheel diameters. Recommended finishing procedures Table 3 Recommended finishing procedures Operation Wheel Grit No. Compound Speed m/s sfm Grinding Rubber bond 24 or 36 None 40–45 8000–9000 Vitrified bond 24 or 36 None 25–30 5000–6000...
Abstract
This article discusses the procedures used for pickling nickel and nickel alloys. Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar surface conditions are pickled in the same solutions using the same procedures. The article discusses three different surface conditions for pickling these nickel alloys: bright annealed white surface requiring removal of tarnish by flash pickling; bright annealed oxidized surface requiring removal of a layer of reduced oxide, sometimes followed by a flash pickle to brighten; and black or dark-colored surface requiring removal of adherent oxide film or scale. The article also reviews specialized pickling operations of nickel alloys and various cleaning and finishing operations, including grinding, polishing, buffing, brushing, and blasting.
Book Chapter
Superabrasives and Ultrahard Tool Materials
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001106
EISBN: 978-1-62708-162-7
... . The focus of this article is further restricted to synthesized diamond and CBN. The latter does not occur in nature, and the former commands 90% of the industrial diamond market. These materials will be treated in terms of the forms in common use: diamond or CBN grains (looser or bonded) and sintered...
Abstract
Synthetic diamond and cubic boron nitride are among a class of superhard materials from the boron-carbon-nitrogen-silicon family of elements. This article focuses on the two materials, the forms in which they are produced, and their respective properties. Synthetic diamond and cubic boron nitride compounds are available in the form of grit and sintered polycrystalline blanks of various size, shape, and composition. The article explains how superabrasive grains made from these materials can be used in lapping, polishing, and grinding applications, and how diamond and boron nitride blanks can be mounted to suitable substrates to form ultrahard cutting edges and tools.
Book Chapter
Traditional Applications for Ceramics
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003051
EISBN: 978-1-62708-200-6
... materials are naturally occurring clays or shales, which have been used in construction for more than 4000 years. The distinguishing manufacturing characteristic is the exposure to elevated temperatures (firing). This must be sufficient to develop a fired bond between the particulate constituents. The bond...
Abstract
Traditional ceramics, one of two general classes, are commonly used in high-volume manufacturing to make building materials, household products, and various industrial goods. Although there is a tendency to equate traditional ceramics with low technology, sophisticated processes and advanced manufacturing techniques are often used where these materials are employed. This article examines several traditional ceramics, including structural clay, whiteware, glazes, enamels, portland cements, and concrete. It also provides a detailed account of fabrication methods, properties, and applications. As an example, common applications for structural clay include facing materials, load-bearing units, pavers, and ceramic tiles.
Book Chapter
Surface Engineering of Nonferrous Metals
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
... are given in Table 12 . Recommended finishing procedures for nickel alloys Table 12 Recommended finishing procedures for nickel alloys Operation Wheel Grit No. Compound Speed m/s sfm Grinding Rubber bond 24 or 36 None 40–45 8,000–9,000 Vitrified bond 24 or 36 None 25–30...
Abstract
This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys. It describes various techniques to improve functional surface properties and enhance the appearance of product forms. The article discusses various cleaning and finishing techniques such as abrasive blast cleaning, polishing and buffing, barrel burnishing, chemical cleaning, pickling, etching and bright dipping, electrochemical cleaning, mechanical cleaning, and mass finishing. It also examines coating processes such as plating, anodizing, chemical conversion coating, and thermal spray, and concludes with a discussion on oxidation-resistant coatings for refractory metals.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006517
EISBN: 978-1-62708-207-5
... the coarsest finish. With a given grit, soft wheels offer finer finishes, but reduced cutting rates and plastic deformation of the subsurface workpiece Conventional abrasive grinding wheels are held together by two types of bond: vitrified and organic. The properties of bonds that are important...
Abstract
Mechanical finishes usually can be applied to aluminum using the same equipment used for other metals. This article describes the two types of grinding used in mechanical finishing: abrasive belt grinding and abrasive wheel grinding. It reviews the binders and fluid carriers used in buffing, and discusses satin finishing and barrel finishing. It also describes lapping and honing techniques that are of special interest in treating aluminum parts that have received hard anodic coatings. Honing recommendations for aluminum alloys are presented in a table.
Book Chapter
Machining of Tool Steels
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002181
EISBN: 978-1-62708-188-7
Abstract
This article describes the selection of tool steels on the basis of specific product applications. It contains tables that list nominal speeds and feeds for the machining of various tool steels. The machining processes include turning, boring, broaching, drilling, reaming, tapping, milling, and sawing. The article explains the machining of the following tool steels: water hardening; types A, D and O cold-work; hot work; high speed, low-alloy special-purpose; and low-carbon mold. It details the machining of tool steel gears. The article also discusses the grinding of tool steels based on steel classification and the effects of steel composition and hardness on grindability. It reviews the types of grinding, namely, surface grinding, cylindrical grinding, centerless grinding, internal grinding, thread grinding, flute grinding, and low-stress grinding. Grinding of types-A, D, F, L, O, P, S and W steels, hot-work steels, and high speed steels, is also detailed.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002145
EISBN: 978-1-62708-188-7
Abstract
This article discusses the different classes of gears, namely, spur, helical, herringbone, crossed-axes helical, worm, internal, rack, bevel, or face-type. It describes the methods used to cut the teeth of gears other than bevel gears: milling, broaching, shear cutting, hobbing, shaping, and rack cutting. The article also reviews the methods that are used to cut the teeth of bevel gears, such as face mill cutting, face hob cutting, formate cutting, helix form cutting, the Cyclex method, and template machining. The machining methods best suited to specific conditions are discussed. The article presents the factors influencing the choice of cutting speed and cutting fluids. It outlines two basic methods for the grinding of gear teeth: form grinding and generation grinding. The article concludes with information on the gear inspection techniques used to determine whether the resulting product meets design specifications and requirements.
Book Chapter
Machining of P/M Tool Steels
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002182
EISBN: 978-1-62708-188-7
... Toolroom grinding (sharpening) (a) Abrasive: very sharp 38A or 32A Grit sizes: 60 to 120 depending on removal and finish requirements Grade: Grade I most effective, but grades as soft as G can work Bond: Vitrified Wheel example: Norton 32A60-I8VBE Wet surface grinding (a) Grit...
Abstract
Wrought powder metallurgy (P/M) high-speed tool steels exhibit better machinability, dimensional control and safety in heat treatment, grindability, and edge toughness during cutting. This article discusses the two stages of machining of P/M tool steels: rough machining, in annealed condition, and finish machining, in hardened-and-tempered condition. It tabulates the composition of commercial crucible particle metallurgy and anti-segregation process tool steels and their typical machining conditions.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001238
EISBN: 978-1-62708-170-2
.... References References 1. Field M. and Kahles J.F. , Review of Surface Integrity of Machined Components , Ann. CIRP , Vol 20 ( No. 2 ), 1971 , p 153 – 163 2. Subramanian K. and Lindsay R.P. , A System Approach for the Use of Vitrified Bonded Superabrasive Wheels...
Abstract
The concept of surface integrity for grinding operations can be extended to encompass six different groups of key factors: visual, dimensional, residual stress, tribological, metallurgical, and others. This article discusses the importance of these factors in the performance and behavior of finishing methods in various manufactured parts. Special emphasis is given to residual stresses and their influence on the final mechanical properties of a manufactured part.
1