Skip Nav Destination
Close Modal
By
Ignacio Perez
By
Patricia L. Stumpff
Search Results for
vibrothermography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6
Search Results for vibrothermography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006444
EISBN: 978-1-62708-190-0
... Abstract Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts...
Abstract
Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts of the vibrothermography process: vibration of the specimen by a transducer; conversion of vibrational energy into heat by a crack, delamination, and other contacting surfaces; conduction of the heat to an external surface; and infrared detection of the heat with a thermal camera.
Image
Frame from a vibrothermography thermal image sequence showing a crack heati...
Available to PurchasePublished: 01 August 2018
Fig. 1 Frame from a vibrothermography thermal image sequence showing a crack heating at the center of a rectangular specimen. A thermographic signal reconstruction enhancement of the background-subtracted temperature increase is superimposed on the raw thermal image. This frame also
More
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006453
EISBN: 978-1-62708-190-0
... and selective excitation configuration of the signal-generation mechanisms in thermal nondestructive evaluation methods. The three widely used approaches to TNDE are surface-excited thermography, vibrothermography, and thermoelastic stress analysis. The article provides information on the common features...
Abstract
Thermal nondestructive evaluation (TNDE) is an indirect process, so that regardless of the form of energy used to excite the sample, interaction with the internal structure of a part occurs through the process of heat conduction. This article discusses the steady-state configuration and selective excitation configuration of the signal-generation mechanisms in thermal nondestructive evaluation methods. The three widely used approaches to TNDE are surface-excited thermography, vibrothermography, and thermoelastic stress analysis. The article provides information on the common features, characteristics, and limitations of these approaches.
Book Chapter
Infrared Imaging for Corrosion, Disbondments, and Cracks
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003657
EISBN: 978-1-62708-182-5
.... Instrum. , Vol 71 , 2000 , p 2418 12. Rantala J. , Wu D. , and Busse G. , Amplitude Modulated Lock-in Vibrothermography for NDE of Polymers and Composites , Research in Nondestructive Evaluation , Vol 7 , No. 4 , 1995 , p 215 – 228 13. Perez I. and Davis...
Abstract
This article begins with an overview of the various aspects of infrared pulse thermography used to detect disbondments, delaminations, and generalized corrosion. It describes the distinctive phases of the pulse thermographic process and the key components that are required to perform active thermography. The components include an excitation source, a thermographic camera, and a computer with software that controls the instrumentation, acquires data, and displays the results. The article discusses the process and experimental setup of sonic thermography used for crack detection.
Book Chapter
Visual Analysis, Nondestructive Testing, and Destructive Testing
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003463
EISBN: 978-1-62708-195-5
... , Composite Materials: Testing and Design , STP 674, Tsai S.W. , Ed., American Society for Testing and Materials , 1979 , p 502 – 516 10. Henneke E.G. and Jones T.S. , Detection of Damage in Composite Materials by Vibrothermography , Nondestructive Evaluation Flaw Criticality...
Abstract
Mechanical and environmental loadings cause a variety of failure modes in composites, including matrix cracking, fiber-matrix debonding, delamination between plies, and fiber breakage. This article summarizes visual analysis and nondestructive testing methods for the failure analysis of composites. These methods include radiography, ultrasonic techniques, acoustic emission, and thermograph. The article also provides information on destructive test techniques.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006451
EISBN: 978-1-62708-190-0
... stress on the surface of a part subjected to time-varying loads. Thermoelastic stress analysis differs from other thermal techniques in that it does not measure heat transfer through a part due to an externally applied excitation, as in pulse thermography or vibrothermography, but instead it measures...
Abstract
Thermoelastic stress analysis (TSA) an increasingly popular infrared (IR)-based technique for measuring stress on the surface of a part subjected to time-varying loads. This article begins by providing a theoretical and historical background of thermoelastic stress analysis. It then describes infrared detectors, such as quantum detectors and thermal/nonquantum detectors, for thermoelastic stress analysis. The article discusses the theoretical aspects for producing thermoelastic stress analysis data and the applications amenable to thermoelastic stress analysis. It concludes with information on the qualitative applications of thermoelastic stress analysis.