1-20 of 463 Search Results for

vibration frequency

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... Abstract This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006478
EISBN: 978-1-62708-190-0
... acoustic transducer, radiography, thermography, and low-frequency vibration methods. The article also provides information on NDE methods commonly used for metal-matrix composites. acoustic emission computed tomography digital radiography eddy-current electromagnetic acoustic transducer fiber...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003436
EISBN: 978-1-62708-195-5
... ultrasonic testing (UT), air-coupled UT, laser UT, ultrasonic spectroscopy, leaky lamb wave method, acousto-ultrasonics, radiography, X-ray computed tomography, thermography, low-frequency vibration methods, acoustic emission, eddy current testing, optical holography, and shearography. The article presents...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006662
EISBN: 978-1-62708-213-6
..., scatter, or absorb the incident radiation. Absorbed infrared radiation usually excites molecules into higher-energy vibrational states. This can occur when the energy (frequency) of the light matches the energy difference between two vibrational states (or the frequency of the corresponding molecular...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001735
EISBN: 978-1-62708-178-8
... radiation. Absorbed infrared radiation usually excites molecules into higher-energy vibrational states. This can occur when the energy (frequency) of the light matches the energy difference between two vibrational states (or the frequency of the corresponding molecular vibration). Infrared spectroscopy...
Book Chapter

By P.H. Shipway
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006414
EISBN: 978-1-62708-192-4
..., such as fretting duration, slip amplitude, normal load, fretting frequency, contact geometry, type of vibration, and surface finish, as well as the role of environmental conditions. The article reviews the influence of an aqueous environment on the mechanism of fretting. The steps that can be taken to reduce...
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002130
EISBN: 978-1-62708-188-7
... such as a machine tool, the mass oscillates at the frequency of the applied cyclic force. Such forced vibrations can be caused by a passing truck or an overhead crane; by machine sources such as faulty bearings or troublesome belts; by loose, worn, or vibrating machine parts; or by interrupted cuts in machining...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006089
EISBN: 978-1-62708-175-7
... milling forces can be obtained by using high vibrational frequencies and small amplitudes of vibration. The mill shown in Fig. 16 operates at 3300 rpm, with a 2 mm (0.08 in.) amplitude, reaching a maximum acceleration rate of 12.2 g , where g is the gravitational acceleration at 9.81 m/s 2 (32.3 ft...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003265
EISBN: 978-1-62708-176-4
... to ringing in the load cell. The load cell has a natural frequency of vibration determined by geometry and physical properties, such as density and elastic modulus. Typical load cells have a natural frequency in the range of 500 to 5000 Hz. In effect, the natural frequency of vibration sets the bandwidth...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001234
EISBN: 978-1-62708-170-2
... abrasive action in the recessed areas of components, is easier to operate, and is cleaner. Two important variables for operation of vibratory equipment are frequency and amplitude of vibration. Frequency may range from 900 to 3000 cycles/min. Amplitude can range from 2 to 10 mm ( 1 16 to 3...
Book Chapter

Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006685
EISBN: 978-1-62708-213-6
... adequately overcomes several limitations of infrared spectroscopy, which has been used extensively over the past several decades to provide vibrational information on surfaces and surface species. An advantage of Raman spectroscopy is its ready accessibility to the low-frequency region of the spectrum...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001736
EISBN: 978-1-62708-178-8
... spectroscopy, which has been used extensively over the past several decades to provide vibrational information on surfaces and surface species. An advantage of Raman spectroscopy is its ready accessibility to the low-frequency region of the spectrum. Vibrational behavior can be characterized as close...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... is an electronic structure program that predicts the energies, molecular structures, vibrational frequencies, and molecular properties from the fundamental laws of quantum mechanics. Gaussian models can be applied to both stable species and short-lived intermediate and transition structures. Gaussian, Inc. http...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002453
EISBN: 978-1-62708-194-8
... by the endurance limit σ e . Performance indices: vibration-limited design Table 5d Performance indices: vibration-limited design Function and constraints Maximize (a) Ties, columns Maximum longitudinal vibration frequencies E /ρ Beams Maximum flexural vibration frequencies E...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006633
EISBN: 978-1-62708-213-6
... is measured by measuring the cantilever deflection. In the noncontact (or dynamic) mode, the force gradient is obtained by vibrating the cantilever and measuring the shift of resonant frequency of the cantilever. To obtain topographic information, the interaction force is either recorded directly or used...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005251
EISBN: 978-1-62708-187-0
... is softened by heating and then formed on an appropriate pattern to produce the hollow cavity for the final casting in the finished mold. The control factors of the V-process that may affect the quality of the castings are the molding sand, vibration frequency, vibrating time, degree of vacuum imposed...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001338
EISBN: 978-1-62708-173-3
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.9781627081900
EISBN: 978-1-62708-190-0
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006444
EISBN: 978-1-62708-190-0
... is not well understood, most likely due to the relative strain across the crack and delamination, both in opening/closing and shear modes. At equal vibration amplitudes, crack heating is roughly proportional to frequency ( Ref 10 ). More cycles generate proportionally more heat, so even at low frequency (e.g...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006368
EISBN: 978-1-62708-192-4
...-frequency components, and it was suggested to use the model for vibration suppression of the hybrid system during engine start and stop. Mabrouk et al. ( Ref 3 ) conducted dynamic analysis on a Darrieus turbine to understand the relation between rotational speed, output power, and bearing vibrations...