1-20 of 394 Search Results for

vapor-plasma state

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001482
EISBN: 978-1-62708-173-3
... Abstract Fusion welding processes involve four phase changes, namely, solid-solid state, solid-liquid, liquid-vapor, and vapor-plasma. Each has its own thermal, momentum, and stress history. This article discusses some important techniques to validate temperature, momentum, stress, and residual...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001291
EISBN: 978-1-62708-170-2
... outwardly toward the workpiece location. Arc confinement is provided by the magnetic field from the focusing coil ( Fig. 2 ). The focusing action is thought to vaporize any macroparticles that pass through the plasma, reducing their number substantially. The source, however, requires a background gas...
Image
Published: 01 January 1994
Fig. 1 Activation energy diagram for thermally driven (solid line) and plasma-enhanced (dashed line) chemical vapor deposition reactions. A and B, initial and final energy states, respectively, for the thermally driven reaction; ΔE, activation energy; A*, B*, ΔE*, corresponding parameters More
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005733
EISBN: 978-1-62708-171-9
... compliance a desired property. Figure 1 shows the typical microstructures of APS and EB-PVD thermal barrier coatings. Fig. 1 Typical microstructures of (a) air-plasma-sprayed (yttria-stabilized zirconia topcoat + CoNiCrAlY bond coat/Inconel 625 substrate) and (b) electron-beam physical vapor...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001285
EISBN: 978-1-62708-170-2
... Abstract This article discusses the application of amorphous and crystalline films through plasma-enhanced chemical vapor deposition (PECVD) from the view point of microelectronic device fabrication. It describes the various types of PECVD reactors and deposition techniques. Plasma enhancement...
Book Chapter

By Donald M. Mattox
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... of ion plating. bombardment film growth interface formation ion plated films ion plating nucleation physical vapor deposited films plasma-based ion plating substrate potential surface preparation ION PLATING is a generic term applied to film deposition processes in which the substrate...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001283
EISBN: 978-1-62708-170-2
... Abstract This article presents the principles of chemical vapor deposition (CVD) with illustrations. It discusses the types of CVD processes, namely, thermal CVD, plasma CVD, laser CVD, closed-reactor CVD, chemical vapor infiltration, and metal-organic CVD. The article reviews the CVD reactions...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005749
EISBN: 978-1-62708-171-9
... oxyfuel wire (spray) OSHA Occupational Safety and Health Administration oz ounce p page p pressure; hydrostatic pressure acting on the surface P specific load Pa pascal PA plasma arc (spray); prealloyed; polyamide PA-CVD plasma-assisted chemical vapor...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006640
EISBN: 978-1-62708-213-6
... continuous spectrum without element-specific features. If the laser pulse duration is a few nanoseconds (typical of most LIBS applications), the sample ablation is mainly due to vaporization and melting of the sample material. However, particle ejection of target material also occurs. As the plasma expands...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005636
EISBN: 978-1-62708-174-0
... for describing the dynamic impingement of metal droplets into the weld pool and the liquid-vapor interface evolution in laser keyhole welding. Results from each group of models are presented in the section “Application to Fusion Welding Processes” in this article. Welding Arc Plasma There are many...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001115
EISBN: 978-1-62708-162-7
... used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... in deposition occur as follows: Synthesis of the material deposited (transition from a condensed state, solid or liquid, to the vapor phase, or, for deposition of compounds, reaction between the components of the compound, some of which may be introduced into the chamber as a gas or vapor) Vapor...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001287
EISBN: 978-1-62708-170-2
... appreciable ionization of the vaporized material because the vaporized atoms pass through a high-density, low-energy electron cloud as they leave the surface. Electron-Beam Guns in a Plasma Environment Electron-beam guns are not generally used in a plasma environment because of sputter erosion...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
... transport; chemistry of the reaction; and processing parameters of temperature, pressure, and chemical activity. CVD Processes Chemical vapor deposition processes can be classified as either open-reactor systems, including thermal CVD and plasma CVD, or as a closed-reactor system, as in pack...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001728
EISBN: 978-1-62708-178-8
... are excited efficiently without the line broadening that occurs in hot dense plasmas. The high excitation energies are attributable to a small population of fast electrons generated in the cathode fall. These electrons excite analyte atoms directly to energetic neutral or ionic states. They also produce...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001729
EISBN: 978-1-62708-178-8
.... Methods currently under investigation include electrothermal vaporization, direct insertion into the plasma, laser ablation, and spark volatilization of conductive solids. Electrothermal Vaporization Electrothermal vaporization of analyte from the surface of resistively heated graphite tubes...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... this vaporized column to reach the metal surface. The hot vapor column becomes partially ionized and can absorb photons through interactions with the thermally excited atoms and through the ions or free electrons in the ionized plasma via a process known as bremsstrahlung absorption. Bremsstrahlung...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001294
EISBN: 978-1-62708-170-2
... the vapor to be ionized via nonresonant multiphoton processes, creating a plasma above the target. As the density of electrons increases, the laser radiation is absorbed preferentially in the plasma by inverse bremsstrahlung scattering ( Ref 6 ). The absorption further heats the plasma and at the same time...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003212
EISBN: 978-1-62708-199-3
... the required properties. These processes include solidification treatments such as hot dip coatings, weld-overlay coatings, and thermal spray surfaces; deposition surface treatments such as electrodeposition, chemical vapor deposition, and physical vapor deposition; and heat treatment coatings...