Skip Nav Destination
Close Modal
By
S.D. Brandi, S. Liu, J.E. Indacochea, R. Xu
By
John B. Greaves, Jr.
By
Vicki L. Rupp, Ken Surprenant
By
Qiming Zhang, Babak Kondori, Xing Qiu, Jeffery C.C. Lo, S.W. Ricky Lee
By
Spiro Megremis, Clifton M. Carey
By
American Welding Society, G.R. Spies, G.C. Barnes, K.L. Brown, W. Beisner ...
By
Bo Hu
Search Results for
vapor-phase soldering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 243
Search Results for vapor-phase soldering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001402
EISBN: 978-1-62708-173-3
... Abstract Vapor-phase soldering is a process of condensation heating in which the product prepared for soldering is passed through or into a layer of saturated vapor. This article provides an overview of the soldering process with emphasis on its applications and the equipment used...
Abstract
Vapor-phase soldering is a process of condensation heating in which the product prepared for soldering is passed through or into a layer of saturated vapor. This article provides an overview of the soldering process with emphasis on its applications and the equipment used.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001395
EISBN: 978-1-62708-173-3
..., namely, vapor-phase reflow, area conduction, and infrared heating. These three techniques are considered as mass reflow techniques, because all of the solderable interconnections on the surface of a printed wiring board (PWB) assembly are brought through the reflow heating cycle simultaneously...
Abstract
Furnace soldering (FS) encompasses a group of reflow soldering techniques in which the parts to be joined and preplaced filler metal are put in a furnace and then heated to the soldering temperature. This article describes three reflow soldering techniques in surface-mount technology, namely, vapor-phase reflow, area conduction, and infrared heating. These three techniques are considered as mass reflow techniques, because all of the solderable interconnections on the surface of a printed wiring board (PWB) assembly are brought through the reflow heating cycle simultaneously. The article explains four regions of reflow profile, namely, preheat (prebake), preflow (soak), reflow, and cooldown. It concludes with a description on the bare copper assembly process, which is carried out in the inert atmosphere.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001346
EISBN: 978-1-62708-173-3
... surface tensions, respectively. Relative to each other, these parameters can be defined by: (Eq 2) γ sv > γ sl > γ lv For soldering, the vapor phase will be replaced in nearly all processes by flux (that is, γ sv is replaced by γ sf and γ lv is replaced by γ lf...
Abstract
Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base fluxes, organic fluxes, inorganic fluxes, and synthetically activated fluxes, are reviewed. The article describes the joint design and precleaning and surface preparation for soldering. It addresses some general considerations in the soldering of electronic devices. Soldering process parameters, affecting wetting and spreading phenomena, such as temperature, time, vapor pressure, metallurgical and chemical nature of the surfaces, and surface geometry, are discussed. The article also describes the applications of furnace soldering, resistance soldering, infrared soldering, and ultrasonic soldering. It contains a table that lists tests commonly used to evaluate the solderability properties of selected soldered components.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001344
EISBN: 978-1-62708-173-3
... to such a degree that a new technique for attachment was needed, and surface mounting was developed. Surface mount technology in turn required new ways to make solder joints, prompting the development of vapor phase, infrared, hot gas, and other reflow soldering techniques. Soldering remains the attachment...
Abstract
This article presents an introduction to brazing, including information on its mechanics, advantages, and limitations. It reviews soldering with emphasis on chronology, solder metals, and flux technology. The article also provides useful information on mass, wave, and drag soldering. It presents a table which contains information on the comparison of soldering, brazing, and welding.
Book Chapter
Soldering
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003211
EISBN: 978-1-62708-199-3
...: Soldering iron or bit Flame or torch soldering Hot dip soldering Induction soldering Resistance soldering Furnace soldering Infrared soldering Ultrasonic soldering Wave soldering Laser soldering Hot gas soldering Vapor-phase soldering Each of the methods is described...
Abstract
Soldering involves heating a joint to a suitable temperature and using a filler metal (solder) that melts below 450 deg C (840 deg F). Beginning with an overview of the specification and standards and applications, this article discusses the principal levels and effects of the most common impurity elements in tin-lead solders. It describes the various processes involved in the successful soldering of joints, including shaping the parts to fit closely together; cleaning and preparing the surfaces to be joined; applying a flux; assembling the parts; and applying the heat and solder.
Book Chapter
Brazeability and Solderability of Engineering Materials
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
... in the interlayer may provide chemical resistance and high puncture-proofness. Presently, processes such as sintering of interfaces, spraying and sintering of coatings, and depositing of layers by chemical vapor deposition, soldering (metal-metal and metal-ceramic), and infiltration (joints of composite materials...
Abstract
This article describes the factors considered in the analysis of brazeability and solderability of engineering materials. These are the wetting and spreading behavior, joint mechanical properties, corrosion resistance, metallurgical considerations, and residual stress levels. It discusses the application of brazed and soldered joints in sophisticated mechanical assemblies, such as aerospace equipment, chemical reactors, electronic packaging, nuclear applications, and heat exchangers. The article also provides a detailed discussion on the joining process characteristics of different types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys; refractory metals; cobalt-base alloys; and ceramic materials.
Book Chapter
Evaluation and Quality Control of Soldered Joints
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001479
EISBN: 978-1-62708-173-3
... corrosive chemicals or allow oxidation or corrosion of the base metal. Porosity is caused by air, flux vapor, plating residues, or water vapor that is trapped within or beneath the solidifying solder. Although any individual can perform a visual examination, training and experience are necessary...
Abstract
Before the quality of a soldered joint can be evaluated, the components that are required for the formation of a good soldered joint should be reviewed. These components are solder, applied heat, and solderable surface. This article discusses each of these as well as the end-use requirements and joint configurations required for the formation of a good soldered joint. It focuses on the visual, automatic, and destructive inspection techniques for determining overall joint quality.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001460
EISBN: 978-1-62708-173-3
... joints or leakage currents between conductors. Solder Paste Solder paste is used primarily in PWB assembly based on surface-mount technology. Processes such as vapor-phase (condensation) and infrared (IR) furnace reflow are well suited to solder paste use. Solder paste is a mixture of solder...
Abstract
Soldering represents the primary method of attaching electronic components, such as resistors, capacitors, or packaged integrated circuits, to either printed wiring board whose defects is minimized by consideration of proper PWB design, device packages, and board assembly. This article discusses the categories that are most important to successful electronic soldering, namely, solders and fluxes selection, nature of base materials and finishes, solder joint design, and solderability testing.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001459
EISBN: 978-1-62708-173-3
... requirements for the alloys. (b) All single figure limits are maximum percentages. Source: Ref 3 The thick, tenacious oxide of lead and the corrosion product layers that form on tin limit the extent of general corrosion to tin-lead solders. However, the lead-rich phase is particularly susceptible...
Abstract
Soldering technology has been used in applications ranging from the packaging of integrated circuit chips to the fabrication of industrial heat exchangers and consequently in structural or electronic applications. This article provides information on various soldering parameters, including types of solder alloy in terms of selection process; selection of substrate base material; flux selection based on adequate wettability by the solder; solder joint assembly; combined substrate, solder, and flux properties; and manufacturing procedures. Each of these parameters is explored using examples of both structural and electronic applications. The article concludes with a discussion on the environmental, safety, and health issues to be considered during soldering.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
...; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001092
EISBN: 978-1-62708-162-7
... used for the conventional tin-lead solders. In the case of preforms, oven heating is used for short runs, and conveyor-type furnaces are used for large runs. In special cases, the use of induction heating, heat guns, or reducing atmospheres is recommended. Vapor-phase soldering with indium-base alloys...
Abstract
This article focuses on the use of indium and bismuth in low-melting-temperature solders and fusible alloys. It describes how the two elements typically occur in nature and how they are recovered and processed for commercial use. It also provides information on designations, classification, composition, properties (including temperatures ranges), and some of the other ways in which indium and bismuth alloys are used.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001076
EISBN: 978-1-62708-162-7
... (°F) 231.9 (449.4) Boiling point, °C (°F) 2270 (4118) Phase transformation temperature on cooling (β phase to α phase), °C (°F) 13.2 (55.8) Latent heat of fusion, J/g (Btu/lb) 59.5 (25.6) Latent heat of phase transformation, J/g (Btu/lb) 17.6 (7.57) Latent heat of vaporization, kJ...
Abstract
Tin is produced from both primary and secondary sources. This article discusses the chemical compositions, production, properties, microstructure and applications of tin and tin alloys. The major tin alloys discussed here are tin-antimony-copper alloy (pewter), bearing alloy, solder alloy and other alloys containing traces of tin. Data on tin consumption in the United States is presented graphically.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003698
EISBN: 978-1-62708-182-5
... Abstract This article discusses the definitions, classifications, structural features, vapor pressure values, corrosion inhibition mechanisms, and methods of evaluation of vapor-phase-corrosion inhibitors or volatile corrosion inhibitors (VCIs). Practical methods of using VCIs for corrosion...
Abstract
This article discusses the definitions, classifications, structural features, vapor pressure values, corrosion inhibition mechanisms, and methods of evaluation of vapor-phase-corrosion inhibitors or volatile corrosion inhibitors (VCIs). Practical methods of using VCIs for corrosion protection of aluminum, ferrous, and nonferrous alloys are discussed with specific examples. The article contains tables that summarize the applications of different VCIs used for protecting ferrous metals, copper and its alloys, and silver.
Book Chapter
Solvent Cold Cleaning and Vapor Degreasing
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001223
EISBN: 978-1-62708-170-2
... such as plating stopoffs, marking crayons, or soldering flux Cleaning of precision items in a succession of steps in which the work is first cleaned in nonpolar solvent to remove oil Temporary general cleaning where the cost of vapor degreasing equipment is not justified Cleaning electrical or electronic...
Abstract
Solvent cleaning is a surface preparation process that can be accomplished in room temperature baths (cold cleaning ) or by condensing vapors of a solvent on a workpiece (vapor degreasing). This article provides a detailed discussion on solvents, equipment, process limitations and applications, and safety and health hazards of cold cleaning and vapor degreasing. It also includes information on control of contamination, conservation and recovery of solvent, and disposal of solvent wastes.
Book Chapter
Failures in Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... to the molten solder. Water vapor, hydration inorganics, and entrapped/codeposited organic materials degraded by the elevated temperatures of soldering are among the sources of gases that lead to dewetting. Typically, higher temperatures and longer soldering processing lead to the generation of more gas...
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Book Chapter
Glass Processing
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003065
EISBN: 978-1-62708-200-6
..., this process is presently of negligible commercial importance. The chemical vapor deposition processes, by which most optical fibers are formed, and the sol-gel processes were developed primarily as low-energy methods to produce high-silica glass products. Such glasses are characterized by high melting...
Abstract
The large majority of the commercially important glasses are processed from a carefully calculated batch of raw materials that is then melted in special furnaces. Providing an introduction to melting practices of glass production, this article focuses on various finishing methods of glass products, including forming, grinding and polishing, and explores the advantages, disadvantages and steps involved in sol-gel process. It also discusses the types, processes and properties of annealed, laminated, and tempered glass, and presents the steps involved in glass decoration. The article gives a detailed account of production, properties and application of fiberglass, optical fibers, glass spheres and ceramic glasses, and describes the forms, classification, compositions and properties of glass/metal and glass-ceramic/metal seals.
Book Chapter
Metallography and Microstructures of Tin and Tin Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003778
EISBN: 978-1-62708-177-1
... the basic procedure, are shown in Fig. 1(c) to (f) . Fig. 1 Very soft metals; alloys of lead and tin. (a) and (b) A near-eutectic soft solder (63% Sn, 37% Pb; hardness, 9 HV). A globular eutectic of tin phase (light) and lead phase (dark). (c) and (d) A linotype metal (4% Sn, 12% Sb, 84% Pb...
Abstract
This article describes the specimen preparation steps for tin and tin alloys, and for harder base metals which are coated with these materials with illustrations. The steps discussed include sectioning, mounting, grinding, polishing, and etching. The article provides information on etchants for tin and tin alloys in tabular form. It presents the procedure recommended for electron microscopy to determine the nature of the intermetallic compound formed by the reaction between tin or tin-lead coatings on various substrates. The article concludes with an illustration of the microstructures of tin-copper, tin-lead, tin-lead-cadmium, tin-antimony, tin-antimony-copper, tin-antimony-copper-lead, tin-silver, tin-indium, tin-zinc, and tin-zinc-copper systems.
Book Chapter
Corrosion and Tarnish of Dental Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004209
EISBN: 978-1-62708-184-9
... microstructural phases through corrosion. However, the concentrations are low and not relatable to toxicological ramifications. Mercury vapors released from amalgam surfaces may also occur. Again, because of the low concentrations emitted, amalgam mercury vapors are not related to toxicity. Allergic reactions...
Abstract
This article describes dental alloy compositions and its properties. It discusses the safety and efficacy considerations of dental alloy devices. The article defines and compares interstitial fluid and oral fluid environments. Artificial solutions developed for the testing and evaluation of dental materials are summarized. The article examines the effects of restoration contact on electrochemical parameters and reviews the concentration cells developed by dental alloy-environment electrochemical reactions. The composition and characterization of biofilms, corrosion products, and other debris that deposit on dental material surfaces are discussed. The article evaluates the types of alloys available for dental applications, including direct filling alloys, crown and bridge alloys, partial denture alloys, porcelain fused to metal alloys, wrought wire alloys, soldering alloys, and implant alloys. The effects of composition and microstructure on the corrosion of each alloy group are also discussed. The article concludes with information on the tarnishing and corrosion behavior of these alloys.
Book Chapter
Safe Practices
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... as fire. To prevent explosions, operators must avoid all sources of ignition. Welding, brazing, soldering, cutting, or operating equipment that can produce heat or sparks must not be done in atmospheres containing flammable gases, vapors, or dusts. Such flammables must be kept in leak-fight containers...
Abstract
Safety is an important consideration in all welding, cutting, and related work. This article discusses the basic elements of safety general to all welding, cutting, and related processes. It includes safety procedures common to a variety of applications. The most important component of an effective safety and health program is management support and direction. The article reviews the role of management, training, housekeeping, and public demonstrations in welding safety to minimize personal injury and property damage. It provides information on the safety measures for eye and face protection in various welding and cutting operations. Injuries and fatalities from electric shock in welding and cutting operations can occur if proper precautionary measures are not followed. The article discusses the electrical safety aspects to be considered for various welding and cutting operations.
Book Chapter
Metal and Alloy Powders for Welding, Hardfacing, Brazing, and Soldering
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006079
EISBN: 978-1-62708-175-7
... Abstract Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications...
Abstract
Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications and the specific powder properties and characteristics they require.
1