1-20 of 700

Search Results for vapor-phase growth

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001284
EISBN: 978-1-62708-170-2
... Abstract This article describes the vapor-phase growth techniques applied to the epitaxial deposition of semiconductor films and discusses the fundamental processes involved in metal-organic chemical vapor deposition (MOCVD). It reviews the thermodynamics that determine the driving force behind...
Book Chapter

Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006222
EISBN: 978-1-62708-163-4
... solid states is then called a phase, and one speaks of the α phase and the β phase. Fig. 1 The distribution of atoms in solid, liquid, and vapor phases of alloys. (a) Two solid solutions formed in a 50% Fe-50% Cu alloy. (b) Liquid phase formed by 50% Fe-50% Cu alloy. (c) Two liquid phases formed...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001286
EISBN: 978-1-62708-170-2
... Abstract This article describes eight stages of the atomistic film growth: vaporization of the material, transport of the material to the substrate, condensation and nucleation of the atoms, nuclei growth, interface formation, film growth, changes in structure during the deposition...
Book Chapter

By James S. Horwitz
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001294
EISBN: 978-1-62708-170-2
... to achieve. When single-element sources are used, the arrival rate of each individual component must be calibrated and inter-regulated. In PLD, the composition of the vapor is the same as that of the target. Starting with the correct composition of the vapor greatly facilitates the growth of a desired phase...
Book Chapter

By Alain Dollet
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005434
EISBN: 978-1-62708-196-2
.... Most of the elementary steps depicted in Fig. 1 for CVD are involved in PVD, except that there is usually no thermal activation of the vapor phase, that is, no gas-phase reactions and no (or few) chemically driven desorption or adsorption steps at the film surface. Hence, growth is mainly driven...
Book Chapter

By Phil Zarrow
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001395
EISBN: 978-1-62708-173-3
..., namely, vapor-phase reflow, area conduction, and infrared heating. These three techniques are considered as mass reflow techniques, because all of the solderable interconnections on the surface of a printed wiring board (PWB) assembly are brought through the reflow heating cycle simultaneously...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
... the underlying mechanisms and kinetics and the relationship between grain growth and densification. densification gas pressure sintering grain growth hot isostatic pressing liquid-phase sintering reaction sintering sintering sol-gel processing solid-state sintering technical ceramics...
Book Chapter

By Mohamed N. Rahaman
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006117
EISBN: 978-1-62708-175-7
... densification grain boundaries grain growth hot isostatic pressing liquid-phase sintering microstructure phase diagram pressure-assisted sintering sinter forging sintering solid-state sintering spark plasma sintering supersolidus liquid-phase sintering transient liquid-phase sintering uniaxial hot...
Book Chapter

By P.S. Pao
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002361
EISBN: 978-1-62708-193-1
... argon environment. Fig. 3 Room-temperature fatigue crack growth kinetics of AISI 4340 steel in dehumidified argon and in water vapor (585 Pa) at R = 0.1 Source: Ref 6 Fig. 4 Environment-dependent component of fatigue crack growth parameter as a function of cyclic load period...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005741
EISBN: 978-1-62708-171-9
... ): Crystallinity is 50 to 90%. The best range is 70 to 85% for bone growth. Minimize the amorphous phase and other decomposed phases, if possible. The best coating thickness is 50 to 70 μm (2.0 to 2.8 mils). Hydroxyapatite and other calcium phosphates have different dissolution behaviors at different...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006069
EISBN: 978-1-62708-175-7
... sintering nitrogen sintering overpressure sintering oxygen content partial-pressure sintering pressure-assisted sintering pressureless sintering sintering sintering furnaces vacuum sintering HARDMETALS (cemented carbide and cemented tungsten carbide) are classic two-phase materials consisting...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001283
EISBN: 978-1-62708-170-2
..., tribological, and high-temperature coatings, as well as free-standing structures. Principles of Chemical Vapor Deposition The CVD process can be defined as the deposition of a solid on a heated surface via a chemical reaction from the vapor or gas phase. It belongs to the class of vapor-transport...
Book Chapter

By Kenneth E. Kihlstrom
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001113
EISBN: 978-1-62708-162-7
... determined ( Ref 6 ) that at the annealing temperatures necessary to form the superconducting phase substantial diffusion occurred from the substrate into the material, with a substantial degradation of superconducting properties. This, combined with the desire for oriented growth (hopefully single crystal...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001287
EISBN: 978-1-62708-170-2
... or nitrogen, or a hydrocarbon is metered into the vacuum chamber, where it reacts with the vapor from a metallic evaporant to form a metal oxide, nitride, or carbide coating. In gas evaporation, a high residual gas pressure causes the formation of ultrafine (100 nm, or 1000 Å) particles by gas phase...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001300
EISBN: 978-1-62708-170-2
... depend on the substrate surface structure and deposition parameters Competitive growth, where certain favorably oriented nuclei will grow into the vapor phase faster than others, but which may not constitute the majority of the nuclei population Steady growth, which occurs once a preferred...
Book Chapter

By Donald M. Mattox
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... Abstract This article begins with a list of the factors that influence the properties of physical vapor deposited films. It describes the steps involved in ion plating, namely, surface preparation, nucleation, interface formation, and film growth. The article discusses the factors influencing...
Book Chapter

By Shay Harrison, Randall Hay
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 30 April 2026
DOI: 10.31399/asm.hb.v21.a0007045
EISBN: 978-1-62708-489-5
... with support from the U.S. Department of Energy to evaluate the vapor-liquid-solid (VLS) approach to producing SiC fibers. The VLS process is driven by gas-phase reactions that are aided by a catalyst substrate onto which the solid fiber is formed ( Ref 9 ). 2000s TISICS Ltd. ( Ref 10 ) broadened...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001312
EISBN: 978-1-62708-170-2
... cleaning, chemical descaling, pickling or etching, anodizing, autoclaving, polishing, buffing, vapor phase nitriding, and electroplating. Applications of these surface treatment processes are also reviewed. anodizing autoclaving blast cleaning buffing chemical descaling cleaning electroplating...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
... as galvanic interactions between uranium, its alloys, and other metals. The article provides information on the atmospheric corrosion of uranium based on oxidation in dry air or oxygen, water vapor, and oxygen-water vapor mixtures depending upon particular storage conditions. The mechanism and morphology...
Book Chapter

Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005816
EISBN: 978-1-62708-165-8
... (momentum) will be able to penetrate the vapor film and strike the plate. The result will be a film of liquid separated from the plate by a layer of vapor. This is called the film boiling or nonwetting phase. The heat-transfer process for this state can be pictured as shown in Fig. 5 ( Ref 2 , 26...