1-20 of 323 Search Results for

vacuum melting

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005200
EISBN: 978-1-62708-187-0
... Abstract Vacuum induction melting (VIM) is often done as the primary melting operation followed by secondary melting (remelting) operations. This article presents the process description of VIM and illustrates potential processing routes for products, which are cast from VIM ingots or...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003173
EISBN: 978-1-62708-199-3
..., furnace types, charging practices of metal melting methods, namely induction melting, cupola melting, arc melting, crucible melting, reaction melting, and vacuum melting, and the refractories and charging practice of reverberatory furnaces. Molten metal treatment of steels and aluminum also is discussed...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005202
EISBN: 978-1-62708-187-0
... Abstract The vacuum arc remelting (VAR) process is widely used to improve the cleanliness and refine the structure of standard air melted or vacuum induction melted (VIM) ingots and also used in the triplex production of superalloys. This article illustrates the VAR process and the capabilities...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001287
EISBN: 978-1-62708-170-2
... natural quartz. Generally, it is better to specify vacuum-melted materials from the supplier when possible. Very reactive metals should be nitrogen-packed in glass ampules to prevent oxidation, and the ampules should be opened and handled in an inert gas dry box where the reactive gas content is kept low...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005955
EISBN: 978-1-62708-166-5
... applications are usually limited to vacuum melting and other specialized uses. In the absence of air or gas, heat transfers from the hot resistance-heating elements to the work load is by radiation. Resistance heating elements operating in a vacuum do not require oxidation-resistant properties equal to...
Book Chapter

By G. Keough
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005203
EISBN: 978-1-62708-187-0
... Abstract Skull melting refers to the use of furnaces with water-cooled crucibles that freeze a solid “skull” of material on the crucible wall. This article describes the basic components, operating pressure, advantages, and applications of vacuum arc and induction skull melting furnaces...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005204
EISBN: 978-1-62708-187-0
... at the end of 2007. Electron beam melting and casting includes melting, refining, and conversion processes for metals and alloys. In electron beam melting, the feedstock is melted by impinging high-energy electrons. Electron beam refining takes place in vacuum in the pool of a water-cooled copper...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
... control valve is required. Plasma melting furnaces are usually operated under slightly positive pressure to prevent the potential atmospheric contamination by oxygen and nitrogen. However, state-of-the-art furnaces are vacuum-tight and can be operated at pressures between 5 and 200 kPa (50 and 2000 mbar...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005195
EISBN: 978-1-62708-187-0
... arc melting of iron and EAF steelmaking. chemical analysis cupola furnaces deoxidation electric arc furnaces ferrous alloys oxidation steel furnace shell water-cooling system preheat and furnace scrap burners heat reduction THE MELTING OF STEEL is performed in both arc furnaces and...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005199
EISBN: 978-1-62708-187-0
... by either converter metallurgy or ladle metallurgy. The article provides a detailed discussion on the converter and ladle metallurgy. The converter metallurgy includes melt refinement in argon oxygen decarburization (AOD) vessels and vacuum oxygen decarburization (VODC) in a converter vessel. The...
Book Chapter

By Volker Heuer
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005770
EISBN: 978-1-62708-165-8
... range between 1 and 20 bar with gas velocities between 0.5 and 20 m/s. When using a nozzle field, velocities can be much higher, up to 80 to 160 m/s. In a few cases, up to 25 bar pressure is applied. The HPGQ process is combined in most cases with a vacuum heat treatment, such as low-pressure...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005338
EISBN: 978-1-62708-187-0
... Abstract This article describes typical foundry practices used to commercially produce zirconium castings. The foundry practices are divided into two sections, namely, melting and casting. The article discusses various melting processes, such as vacuum arc skull melting, induction skull melting...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005303
EISBN: 978-1-62708-187-0
... create an opportunity for gas reabsorption. Furthermore, a melt can be overdegassed; an optimal amount of residual gas remaining in the melt helps to counter localized shrinkage in long-freezing-range alloys such as leaded tin bronzes. Vacuum degassing is not generally applied to copper alloys...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005299
EISBN: 978-1-62708-187-0
... pour ladle is normally 1 to 3 kg/Mg (2 to 7 lb/ton). The commonly used elements for deoxidation are (in order of decreasing power) zirconium, aluminum, titanium, silicon, carbon, and manganese. Some foundries have recently installed AOD units to achieve some of the results that vacuum melting can...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
... gamma aluminides with particular reference to production scaleable techniques, including vacuum arc and cold-hearth melting, isothermal forging, conventional hot forging, and extrusion. The selection and design of manufacturing methods, in the context of processing-cost trade-offs for gamma titanium...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005265
EISBN: 978-1-62708-187-0
... controlled vacuum to the mold chamber, but it can also be accomplished by applying a controlled pressure to the melt surface. This differential pressure causes metal to flow up the sprue and into the mold cavities. After the mold is completely filled, the liquid metal is held in position with this...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005285
EISBN: 978-1-62708-187-0
... provide an argon atmosphere. The shielding is required to maintain a tight seal against a vacuum induced by the thermiting reaction, which will attempt to pull in additional oxygen to supply the reaction. The argon atmosphere keeps oxygen from the cooling dross and stops further burning. Dross is pulled...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005251
EISBN: 978-1-62708-187-0
... and geometry of the part. Source: Adapted from literature of Harmony Castings Table 3 Plastic films used for the vacuum molding process Type of film Density, g/cm 3 Melting point °C °F Low-density polyethylene 0.920 88–90 190–194 High-density polyethylene 0.960 94–97...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005784
EISBN: 978-1-62708-165-8
... Abstract A wide variety of stop-off technologies for heat treatment are used to selectively prevent the diffusion of carbon and/or nitrogen during atmosphere carburizing, carbonitriding, vacuum carburizing, and various forms of nitriding. In addition to selective stop-off, technologies are also...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003041
EISBN: 978-1-62708-200-6
... Abstract Autoclave molding is a process used to impart a controlled heat and pressure cycle cure to a layup. This article describes the materials used for preparing a layup, including peel ply, separator, bleeder, barrier, breather, dam, and vacuum bag. It describes the major elements and...