Skip Nav Destination
Close Modal
Search Results for
vacuum hot pressing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 794
Search Results for vacuum hot pressing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Fig. 22 Microstructure of beryllium consolidated by vacuum hot pressing revealed using polarized light microscopy
More
Image
Published: 01 January 1990
Fig. 12 Production-scale 225 Mg (250 ton) vacuum hot press. Courtesy of Vacuum Industries, Inc.
More
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Fig. 20 Scanning electron micrograph of the surface of vacuum-hot-pressed consolidated beryllium after electrical discharge machining, showing morphology of a recast layer
More
Image
in Metallography and Microstructures of Beryllium, Copper-Beryllium, and Nickel-Beryllium Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 20 S-65B vacuum hot-pressed block; billet consolidated from impact-ground powder. Polarized light micrograph shows substantially equiaxed grains with particles of BeO. Bright areas are locations where BeO has been “pulled out” during metallographic preparation. As-polished. 250×
More
Image
in Metallography and Microstructures of Beryllium, Copper-Beryllium, and Nickel-Beryllium Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 21 S-200F vacuum hot-pressed block; billet consolidated from impact-ground powder. Seen under polarized light, the microstructure consists of equiaxed grains with particles of BeO. Average grain size is 8 to 10 μm; bright areas show where oxide has been “pulled out” during preparation
More
Image
in Metallography and Microstructures of Beryllium, Copper-Beryllium, and Nickel-Beryllium Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 22 I-220 vacuum hot-pressed block; billet consolidated from impact-ground powder. Polarized light micrograph shows substantially equiaxed grains with BeO particles. Average grain size is 8 to 9 μm; bright areas are locations where BeO was “pulled out” during preparation. The relatively
More
Image
in Metallography and Microstructures of Beryllium, Copper-Beryllium, and Nickel-Beryllium Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 23 I-400 vacuum hot-pressed block; billet consolidated from ball-milled powder. Under polarized light, microstructure shows substantially equiaxed grains with particles of BeO, along with bright areas where BeO was “pulled out” during preparation. Average grain size is 5 μm or less
More
Image
in Metallography and Microstructures of Beryllium, Copper-Beryllium, and Nickel-Beryllium Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 24 SR-200 sheet, rolled at elevated temperature from S-200E vacuum hot-pressed block. Under polarized light, longitudinal section shows grains elongated in the rolling direction. This structure is typical of beryllium sheet, which often has reduced ductility if it is recrystallized after
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006058
EISBN: 978-1-62708-175-7
... Abstract This article briefly describes the production of beryllium powder and beryllium/beryllium oxide metal-matrix powder. It discusses fully dense consolidation methods: vacuum hot pressing, hot isostatic pressing, and cold isostatic pressing. Secondary fabrication operations of beryllium...
Abstract
This article briefly describes the production of beryllium powder and beryllium/beryllium oxide metal-matrix powder. It discusses fully dense consolidation methods: vacuum hot pressing, hot isostatic pressing, and cold isostatic pressing. Secondary fabrication operations of beryllium and aluminum-beryllium alloys such as extrusion, rolling, welding, joining, and machining are discussed. The article discusses quality control and provides information on the structural, optical, and high-purity grades of beryllium.
Image
Published: 01 January 1990
Fig. 3 Schematic diagrams of two powder consolidation methods. (a) Vacuum hot pressing. In this method, a column of loose beryllium powders is compacted under vacuum by the pressure of opposed upper and lower punches (left). The billet is then brought to final density by simultaneous
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001086
EISBN: 978-1-62708-162-7
... as low as 1 to 10 μm to be achieved when required. Consolidation by vacuum hot pressing, hot isostatic pressing, pressing and sintering, or other processes can produce parts with density values in excess of 99.5% of the theoretical value of 1.8477 g/cm 3 (0.067 lb/in. 3 ). The application of P/M...
Abstract
Beryllium is a metal with an unusual combination of physical and mechanical properties that make it particularly effective in optical components, precision instruments, and specialized aerospace applications. Almost all of the beryllium in use is a powder metallurgy (P/M) product. Beginning with an overview of the mining and refining processes of beryllium, this article discusses powder production and consolidation methods, beryllium grades and their designations, and the protective measures that have been enacted to reduce exposure to beryllium.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005142
EISBN: 978-1-62708-186-3
...) Special lubrication Safety precautions when grit blasting is required for cleaning after forming Almost all beryllium currently used is produced by consolidating beryllium powder into a block by vacuum hot pressing. The powder is obtained by chipping and then mechanically or pneumatically...
Abstract
This article describes the effect of temperature, composition, strain rate, and fabrication history on the results obtained in the forming of beryllium as well as the safety measures required. It provides information on the equipment, tooling, dies, and workpieces used for forming beryllium. The article discusses the role of lubrication, blank development, tool designs, and strain rates, in deep drawing. It also provides information on the tooling and applications of three-roll bending, stretch forming, and spinning.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006069
EISBN: 978-1-62708-175-7
... and postsinter hot isostatic pressing (HIP). Sintering Hardmetals are sintered in vacuum, as well as hydrogen and neutral gas-based atmospheres. Vacuum sintering is used to control composition through carbothermal reduction and carburization. Partial pressure is mostly used at high temperatures during...
Abstract
This article discusses two major sintering methods: pressureless and pressure-assisted sintering. Pressureless sintering techniques include vacuum and partial-pressure, hydrogen, and microwave sintering. Pressure-assisted consolidation techniques include overpressure sintering, sintering followed by postsinter hot isostatic pressing, hot pressing, and several rapid hot consolidation techniques. The article describes nitrogen sintering and the sintering of cermets. It reviews the furnaces used for sintering and presents the lubrication removal techniques. The article also outlines the need to control carbon and oxygen to obtain optimal properties and explains microstructure development and grain size control.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003770
EISBN: 978-1-62708-177-1
... of a beryllium component. Polarized light is generally used for metallographic examination instead of chemical etchants, although grain-boundary etchants have been used in some investigations. The fine grain size of the most common commercial forms of beryllium (vacuum hot-pressed block and rolled sheet...
Abstract
The two major types of beryllium-containing alloys are copper-berylliums and nickel-berylliums. The most widely used beryllium-containing alloys are wrought copper-berylliums, which provide good strength while retaining useful levels of electrical and thermal conductivity. This article provides information on the specimen preparation procedures, macroexamination, microexamination, and microstructures of beryllium, copper-beryllium alloys, as well as nickel-beryllium alloys. It also discusses health and safety measures associated with the specimen preparation of beryllium and beryllium-containing alloys.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003420
EISBN: 978-1-62708-195-5
... (which has an open interconnected pore structure) to remove volatile contaminants (lubricants and mixing and blending additives), water vapor, and gases; and (4) consolidation by vacuum hot pressing or hot isostatic pressing. The hot pressed cylindrical billets can be subsequently extruded, rolled...
Abstract
Metal-matrix composites (MMCs) are a class of materials with a wide variety of structural, wear, and thermal management applications. This article discusses the primary processing methods used to manufacture discontinuous aluminum MMCs, namely, high-pressure die casting, pressure infiltration casting, liquid metal infiltration, spray deposition, and powder metallurgy methods. It describes the processing of continuous fiber-reinforced aluminum, discontinuously, reinforced titanium, and continuous fiber-reinforced titanium. The article concludes with information on work done to develop magnesium, copper, and superalloy MMCs.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002122
EISBN: 978-1-62708-188-7
... on the applications of tool steels. anti-segregation crucible particle metallurgy FULDENS process heat treatment high-speed tool steels hot isostatic pressing inert-gas atomization powder metallurgy vacuum sintering POWDER METALLURGY (P/M) high-speed tool steels are used extensively for drills...
Abstract
This article describes procedures for producing powder metallurgy high-speed tool steel powder by inert-gas atomization, followed by compaction by hot isostatic pressing. These include the anti-segregation process (ASP) and the crucible particle metallurgy (CPM) process. The article reviews the properties of ASP and CPM and summarizes the procedures to heat treat ASP high-speed tool steels. It discusses the processing steps, advantages, and applications of the FULDENS process that uses water-atomized powders compacted by vacuum sintering. The article also provides information on the applications of tool steels.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005146
EISBN: 978-1-62708-186-3
... forming formability hot forming joggling lubricants power spinning press-brake forming rubber-pad forming stretch forming superplastic forming titanium alloys vacuum forming TITANIUM AND ITS ALLOYS can be formed in standard machines to tolerances similar to those obtained in the forming...
Abstract
This article describes different types of titanium alloys, including alloy Ti-6Al-4V, alpha and near-alpha alloys, and alpha-beta alloys. It explains the formability of titanium alloys with an emphasis on the Bauschinger effect. The article provides information on the tool materials and lubricants used in the forming process. It provides information on the cold and hot forming, superplastic forming, and combination of superplastic forming/diffusion bonding. The article discusses the various forming processes of these titanium alloys, including press-brake forming, power (shear) spinning, rubber-pad forming, stretch forming, contour roll forming, creep forming, vacuum forming, drop hammer forming, joggling, and explosive forming.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001375
EISBN: 978-1-62708-173-3
... cleaning steps of base-metals. electrodeposited interlayers foil interlayers hot isostatic pressing interlayer fabrication low-temperature solid-state welding surface preparation tensile strength uniaxial compression vacuum coated interlayers welding SOLID-STATE WELDING is the joining...
Abstract
This article describes low-temperature solid-state welding processes in relation to the interlayer fabrication method, welding method, and welding parameters. The interlayer fabrication method is used to produce vacuum coated interlayers, electrodeposited interlayers, and foil interlayers. The article discusses welding methods, including uniaxial compression and hot isostatic pressing. The article provides information on the effect of base-metal surface finish on the tensile strength of joints solid-state welded using silver interlayers in tabular form and addresses the surface cleaning steps of base-metals.
1