Skip Nav Destination
Close Modal
Search Results for
vacuum high-pressure die casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 429 Search Results for
vacuum high-pressure die casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005276
EISBN: 978-1-62708-187-0
... Abstract Vacuum high-pressure die casting uses a vacuum pump to evacuate the air and gases from the die casting die cavity and metal delivery system before and during the injection of molten metal. This article describes the conventional die casting, vacuum die casting, and high-pressure die...
Abstract
Vacuum high-pressure die casting uses a vacuum pump to evacuate the air and gases from the die casting die cavity and metal delivery system before and during the injection of molten metal. This article describes the conventional die casting, vacuum die casting, and high-pressure die casting processes.
Image
Published: 01 December 2008
Fig. 1 A vacuum high-pressure die casting system for casting aluminum. Source: Adapted from schematic courtesy of NADCA
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005266
EISBN: 978-1-62708-187-0
... liquid metal into the shot sleeve prior to injection into the cavity. Vacuum is used not only in conventional high-pressure die casting but also to some degree in the high-integrity processes of squeeze casting and SSM casting. There is another term, high vacuum die casting , which describes a process...
Abstract
This article provides a comprehensive discussion on die casting alloy types and casting processes used in high-pressure die casting. It presents the advantages and disadvantages of high-pressure die casting and describes the product design for the process. The article concludes with information on the metal injection process of high-pressure die casting.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006525
EISBN: 978-1-62708-207-5
... Abstract Nearly two-thirds of the aluminum castings made in North America are produced using high-pressure die casting techniques. This article compares and contrasts traditional high-pressure die casting with an improved version that uses a vacuum to pull air out of the die in order to reduce...
Abstract
Nearly two-thirds of the aluminum castings made in North America are produced using high-pressure die casting techniques. This article compares and contrasts traditional high-pressure die casting with an improved version that uses a vacuum to pull air out of the die in order to reduce porosity in as-cast parts. It begins by describing a typical cycle for a traditional cold-chamber die casting machine, using detailed illustrations to show how gas can become trapped in the liquid metal. It then presents various remedies, ultimately focusing on vacuum die casting for the production of high-integrity parts. In addition to vacuum technology, the article discusses casting alloys, dies, and cells, and describes some of the benefits of structural die castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005187
EISBN: 978-1-62708-187-0
..., such as permanent mold; and high-pressure metal mold methods, such as die casting, squeeze casting, and semisolid processing. The categories and subcategories of shape casting processes are illustrated in Fig. 1 and are described in more detail in other articles of this Volume. Each shape casting process has...
Abstract
This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods, such as die casting, squeeze casting, and semisolid processing. The article contains tables that compare some of the typical capabilities of shape casting processes.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005261
EISBN: 978-1-62708-187-0
.../pressure riserless casting process for casting aluminum. metal casting furnaces pressure riserless casting casting aluminum low-pressure casting vacuum riserless LOW-PRESSURE METAL CASTING has been used since the 1950s to produce high-volume, high-integrity castings in alloys ranging from...
Abstract
This article provides an overview of conventional low-pressure casting and describes types of furnaces, tooling, and cores. It discusses the casting cycle steps, advantages, mechanical properties, and considerations of counterpressure casting. The article describes the vacuum riserless/pressure riserless casting process for casting aluminum.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid...
Abstract
Aluminum casting alloys are among the most versatile of all common foundry alloys and generally have high castability ratings. This article provides an overview of the common methods of aluminum shape casting. It discusses the designations of aluminum casting alloys categorized by the Aluminum Association designation system. The article summarizes the basic composition groupings of aluminum casting alloy and discusses the effects of specific alloying elements and impurities. The characteristics of the important casting processes are summarized and compared in a table. The article presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid casting, is also included.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003420
EISBN: 978-1-62708-195-5
... Abstract Metal-matrix composites (MMCs) are a class of materials with a wide variety of structural, wear, and thermal management applications. This article discusses the primary processing methods used to manufacture discontinuous aluminum MMCs, namely, high-pressure die casting, pressure...
Abstract
Metal-matrix composites (MMCs) are a class of materials with a wide variety of structural, wear, and thermal management applications. This article discusses the primary processing methods used to manufacture discontinuous aluminum MMCs, namely, high-pressure die casting, pressure infiltration casting, liquid metal infiltration, spray deposition, and powder metallurgy methods. It describes the processing of continuous fiber-reinforced aluminum, discontinuously, reinforced titanium, and continuous fiber-reinforced titanium. The article concludes with information on work done to develop magnesium, copper, and superalloy MMCs.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006488
EISBN: 978-1-62708-207-5
... main methods of MMC solidification processing. It describes the MCC casting methods, such as sand and permanent mold casting, centrifugal casting, compocasting, and high-pressure die casting. The article discusses the MMC infiltration processes in terms of pressure infiltration casting and liquid metal...
Abstract
In general, metal-matrix composites (MMCs) are classified into three broad categories: continuous fiber-reinforced composites, discontinuous or short fiber-reinforced composites, and particle-reinforced composites. This article focuses on stir casting and melt infiltration as the two main methods of MMC solidification processing. It describes the MCC casting methods, such as sand and permanent mold casting, centrifugal casting, compocasting, and high-pressure die casting. The article discusses the MMC infiltration processes in terms of pressure infiltration casting and liquid metal infiltration. It reviews the powder metallurgy processing of aluminum MMCs and deformation processing of discontinuously reinforced aluminum composites. The article concludes with a discussion on the processing of fiber-reinforced aluminum.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003172
EISBN: 978-1-62708-199-3
... molds Colloidal silica bond Plaster bond Counter-gravity low-pressure casting Permanent mold processes Die casting High-pressure die casting Low-pressure die casting Gravity die casting (permanent mold) (a) Centrifugal casting Vertical centrifugal casting...
Abstract
This article discusses classification of foundry processes based on the molding medium, such as sand molds, ceramic molds, and metallic molds. Sand molds can be briefly classified into two types: bonded sand molds, and unbonded sand molds. Bonded sand molds include green sand molds, dry sand molds, resin-bonded sand molds, and sodium silicate bonded sand. The article describes the casting processes that use these molds, including the no-bake process, cold box process, hot box process, the CO2 process, lost foam casting process and vacuum molding process. The casting processes that use ceramic molds include investment casting, and plaster casting. Metallic molds are used in permanent mold casting, die casting, semisolid casting, and centrifugal casting.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... process based on process requirements is pressure die casting, in which more than the usual measures of castability apply. The process demands a high level of fluidity, hot strength, hot tear resistance, and die soldering resistance. Chemical compositions of aluminum casting alloys are given...
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005200
EISBN: 978-1-62708-187-0
... compositional tolerances Precise temperature control Low level of environmental pollution from dust output Removal of undesired trace elements with high vapor pressures Removal of dissolved gases, for example, hydrogen and nitrogen Vacuum induction melting is indispensable in the manufacture...
Abstract
Vacuum induction melting (VIM) is often done as a primary melting operation followed by secondary melting (remelting) operations. This article presents the process description of VIM and illustrates potential processing routes for products, which are cast from VIM ingots or electrodes. It describes the VIM refinement process, which includes the removal of trace elements, nitrogen and hydrogen degassing, and deoxidation. The article concludes with information on the production of nonferrous materials by VIM.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006513
EISBN: 978-1-62708-207-5
... by gravity, low pressure, vacuum and centrifugal pressure, and squeeze casting. The process of high-pressure die casting (HPDC) is described in more detail in the article “Die Casting of Aluminum Alloys” in this Volume. The HPDC process is ideal to economically cast metals with low melting points...
Abstract
Aluminum casting in steel and iron permanent molds is used widely throughout industry, and the vast majority of permanent mold castings are made of aluminum and its alloys. There are several methods used to cast aluminum in permanent molds. This article focuses on permanent mold casting with molten aluminum fed by gravity, low pressure, vacuum and centrifugal pressure, and squeeze casting. It discusses the major variables that affect the life of permanent molds, including pouring temperature, casting shape, cooling methods, heating cycles, storage, and cleaning. The article reviews the basic components of mold coatings: refractory fillers, binder, and carrier. Casting defects and suggested corrective actions for permanent mold casting are summarized in a table. The article concludes with a discussion on thin-wall permanent-mold castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005292
EISBN: 978-1-62708-187-0
... Abstract High-pressure die casting is a fast method for the net shape manufacturing of parts from nonferrous alloys. This article reviews the automation technologies for the different stages or steps of the process. These steps include liquid metal pouring, injection, solidification, die open...
Abstract
High-pressure die casting is a fast method for the net shape manufacturing of parts from nonferrous alloys. This article reviews the automation technologies for the different stages or steps of the process. These steps include liquid metal pouring, injection, solidification, die open, part extraction, die lubrication, insert loading, and die close. Some manual aspects of the operations, together with automation options, are discussed. The article describes finishing steps, such as finish trimming, detailed deflashing, shot blast cleaning, and quality checks. Automation of the postcasting process is also discussed.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005348
EISBN: 978-1-62708-187-0
... G modulus of rigidity; thermal gradient ACI Alloy Casting Institute CVM control volume method Gc concentration gradient ADCI American Die Casting Institute CVN Charpy V-notch (impact test or gal. gallon ADI austempered ductile iron GFN grain neness number AFS American Foundrymen s Society specimen...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005318
EISBN: 978-1-62708-187-0
... and the need and economics of postprocessing. This article examines how design and materials selection address these diverse requirements of conventional die casting tooling. It focuses on the tooling for high-volume processes where the liquid or semisolid metal is forced into the die with high pressure...
Abstract
The designer of die casting tooling must balance the functional requirements of the part being cast with the cost, speed, and quality requirements of the process. In addition, attention must also be paid to the capacity and operating parameters of the casting machines being used and the need and economics of postprocessing. This article examines how design and materials selection address these diverse requirements of conventional die casting tooling. It focuses on the tooling for high-volume processes where the liquid or semisolid metal is forced into the die with high pressure and speed. The article also describes the functions of the tooling which involves supplying of molten alloy to the casting machine and injecting it into the die.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
..., and semisolid forming based on rheocasting/thixocasting principles. Of these casting methods, high-pressure die casting of aluminum is the dominant nonferrous casting process ( Fig. 1 ). Fig. 1 Nonferrous casting processes by tons poured. Source: From data of AFS 2002 survey. This article provides...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article provides an overview of the common methods of aluminum shape casting. These include gravity casting, die casting, sand casting, lost foam casting, shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005273
EISBN: 978-1-62708-187-0
... in thixocasting. The article illustrates the differences between a conventional high-pressure die-casting injection profile and the thixocasting injection profile used to produce the same part. thixocasting billet sawing rheological tests high-pressure die-casting injection SEMISOLID METAL CASTING...
Abstract
This article provides an overview of the thixocasting process and discusses the concepts that are important to the practical application of this technology. The thixocasting process involves two casting processes. The first casting process is required to make the feedstock that must be reheated to achieve the structures necessary for casting. The second casting process combines billet sawing, reheating, and the actual injecting of material into the mold. The article focuses on these processes and provides information on rheological tests. It discusses some key design concepts used in thixocasting. The article illustrates the differences between a conventional high-pressure die-casting injection profile and the thixocasting injection profile used to produce the same part.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005255
EISBN: 978-1-62708-187-0
...-purpose slurry. (c) A high-strength slurry used for ceramic shell molds for castings with heavy sections and for applications in which high wax pressure during meltout and high metal pressure are used. (d) Modified with silica; used with castings with small cored holes from which cores are removed...
Abstract
This article reviews the pattern materials used in investment casting, which can be loosely grouped into waxes and plastics. The patternmaking process, pattern tooling, and pattern and cluster assembly are described. The article also describes the manufacture of ceramic shell molds and cores, detailing the binders and other materials used, as well as the formulation and control of slurries. Methods for pattern removal, mold firing, melting, casting, postcasting treatment, and inspection are explained. After presenting design recommendations for investment castings, the article concludes with information on applications and special versions of the investment casting process.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005306
EISBN: 978-1-62708-187-0
.... In terms of shape casting, the percentage of nonferrous shape casting tonnage is roughly as follows ( Ref 1 ): Aluminum high-pressure die casting, 54% Aluminum sand and permanent mold casting, 12% Zinc high-pressure die casting, 11% Aluminum lost foam casting, 10% Sand mold casting...
1