Skip Nav Destination
Close Modal
Search Results for
vacuum bag molding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 124 Search Results for
vacuum bag molding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 1995
Fig. 3 Vacuum bag molding techniques. (a) Wipe-out process for wet lay-ups. (b) Seal-off method for prepreg lay-ups
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003036
EISBN: 978-1-62708-200-6
... Abstract Wet lay-up using hand or spray techniques is one of the simplest methods of combining a fiber reinforcement with a solidifying resin to form a composite structure. This article describes several wet lay-up processes - including contact molding, spray molding, vacuum bag molding...
Abstract
Wet lay-up using hand or spray techniques is one of the simplest methods of combining a fiber reinforcement with a solidifying resin to form a composite structure. This article describes several wet lay-up processes - including contact molding, spray molding, vacuum bag molding, and autoclave molding - suited for making parts on open-faced molds using polyester and vinyl ester resins. The article also provides information on mechanically assisted lay-up which can be automated to alleviate some of the manual work.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003041
EISBN: 978-1-62708-200-6
... Abstract Autoclave molding is a process used to impart a controlled heat and pressure cycle cure to a layup. This article describes the materials used for preparing a layup, including peel ply, separator, bleeder, barrier, breather, dam, and vacuum bag. It describes the major elements...
Abstract
Autoclave molding is a process used to impart a controlled heat and pressure cycle cure to a layup. This article describes the materials used for preparing a layup, including peel ply, separator, bleeder, barrier, breather, dam, and vacuum bag. It describes the major elements and functions of an autoclave system, including pressure vessel, gas stream heating and circulation sources, gas stream pressurizing systems, vacuum systems, control systems, and loading systems. The article includes information about modified autoclaves for specialized applications and safety practices in autoclave molding. It also describes the tooling configuration and type of tooling which includes aluminum and steel tooling, electroformed nickel tooling, graphite-epoxy tooling, and elastomeric tooling.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003405
EISBN: 978-1-62708-195-5
... debulking cycles of resin transfer molding (RTM) preforms. The preforms are debulked to eliminate excess bulk so they can be easily loaded in the matched-mold RTM tool. Conventional vacuum bags pull preforms too tight around the corners of debulking mandrels, which, combined with the increased bag pressure...
Abstract
Elastomeric tooling uses rubber details to generate required molding pressure or to serve as a pressure intensifier during composite part curing cycles. This article discusses the various aspects of the forms of commercially available bag-side elastomeric caul systems. It describes the two basic methods, such as the trapped or fixed-volume rubber method and the variable-volume rubber method, of elastomeric tooling, which use the principles of thermal expansion molding. The significant properties and controlling equations that are required to characterize elastomeric tooling material are also discussed.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003412
EISBN: 978-1-62708-195-5
... and circulate it uniformly within the vessel, a subsystem to pressurize the gas stream, a subsystem to apply vacuum to parts covered by a vacuum bag, a subsystem to control operating parameters, and a subsystem to load the molds into the autoclave. Pressure Vessel The pressure vessel shell provides...
Abstract
Curing is the irreversible change in the physical properties of a thermosetting resin brought about by a chemical reaction, condensation, ring closure, or addition. This article discusses the material types and functions of various components considered in the preparation for curing. It presents a discussion on the major elements of an autoclave system, namely, pressure vessel, gas stream heating and circulation sources, gas stream pressurizing systems, loading systems, and vacuum systems. The article describes a computerized approach to the simultaneous control of materials reaction behavior and consolidation dynamics, using an autoclave as the reaction vessel.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003414
EISBN: 978-1-62708-195-5
... shown that vacuum infusion can also be an alternative to prepreg compression molding and prepreg vacuum bagging. When choosing the most cost-efficient manufacturing technology for a certain part several criteria play a role. Important criteria are: The number of parts (production volume...
Abstract
Vacuum infusion is a resin injection technique derived from resin transfer molding. This article discusses the characteristics of the technique and its applications. It presents the theory and background of the technique and provides an illustration of how parts are made. The article provides information on the equipment and material used for vacuum infusion. It describes the mechanical properties of components and summarizes the influence of production on the properties. The article concludes with a discussion on design guidelines.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003392
EISBN: 978-1-62708-195-5
... methods: Wet lay-up, prepreg lay-up, fiber placement, tape lay-up, pultrusion, resin transfer molding (RTM), vacuum- assisted resin transfer molding, filament winding, compression molding, injection molding, centrifugal casting Processing equipment: Vacuum bagging, molds, ovens, autoclaves, presses...
Abstract
This article describes common design criteria and identifies the design considerations that have a significant effect on the end product. The design criteria include cost, size, mechanical properties, repeatability and precision of parts, damage tolerance and durability, and environmental constraints.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003407
EISBN: 978-1-62708-195-5
... overlaps. Debulking is also commonly required during the lamination process. These factors usually result in greater labor costs and higher use of materials, such as vacuum bagging consumables. Fig. 8 Prepreg hull on male mold prior to consolidation The requirements of tooling for the hull...
Abstract
This article focuses on the design process, materials, and manufacturing techniques for one-off and low-volume production sailing craft. These include racing yachts of typically 10-20 m length for short coastal events, 20-25 m ocean racers, 24 m America's Cup racing craft, multihull racers of 35 m or more, and large luxury cruising craft. The article discusses the tooling, laminating practice, curing, mold removal, and quality control, for manufacturing hulls, decks, masts, and appendages using composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003403
EISBN: 978-1-62708-195-5
... and processes are still used for many other applications. Modern lay-up methods and vacuum bagging techniques can be employed with long pot-life resins to achieve acceptable tool laminates. Many of the wet lay-up methods and techniques parallel those used to fabricate prepreg tooling, which is the primary focus...
Abstract
Composite tooling is the making of tools from composite materials. This article focuses on wet lay-up methods and techniques that are used to fabricate prepreg tooling. It discusses the advantages and disadvantages of composite tools. The article describes the process considerations for composite tool design, such as master model or pattern design selection, fiber and fabric selection, resins, and surface coat and ply. Various tool laminate construction techniques, such as curing and demolding, and cutting and trimming, are reviewed. The article also describes the substructure design for the construction of tool laminates.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006053
EISBN: 978-1-62708-175-7
..., and injection molding. Processes such as uniaxial pressing and CIP are performed using powders directly from spray drying or vacuum drying, whereas processes such as extrusion and injection molding require addition of binders after drying. The goal of green shaping is to form dry powder into desired shapes...
Abstract
Consolidation and shaping of grade powders is carried out using several methods, depending on the size, complexity, shape, and quantity of parts required. This article details the powder consolidation methods of carbide powders: uniaxial pressing, cold isostatic pressing, extrusion, green machining, and injection molding.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003409
EISBN: 978-1-62708-195-5
... simplicity of prepreg lay-up and cure using a vacuum bag and/ or pressure is undeniably preferable to liquid molding processes. The downside of freezer storage and high prepreg cost if procuring small quantity continues to be overcome by the ability to make components simply and reliably...
Abstract
The prepreg hand lay-up process is a versatile, reliable, cost-effective, and high quality process for fabricating large or small components. This article discusses the technique characteristics and applications of the process. It describes the stages involved in the process of lay-up, namely, lay-up definition, ply-kit cutting, layup, debulking, and preparation for curing. The article concludes with a discussion on the component properties and design guidelines of the prepreg hand lay-up process.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006074
EISBN: 978-1-62708-175-7
... to 65% of theoretical, a nominal range for uncompacted powder, to 75 to 85% of the 100% theoretical density value of the metal being processed. There are two variations of the CIP process depending on the way the elastomer mold is utilized. In the “dry-bag” process, the elastomer mold is fixed...
Abstract
This article describes the unique aspects of cold isostatic pressing (CIP) in comparison with die compaction, for powder metallurgy parts. It details the components of CIP equipment, including pressure vessels, pressure generators, and tooling material. The article reviews the part shapes and their influence in determining tap density of the filled mold. It provides a discussion on process parameters, such as dwell time, depressurization rate, evaluation of green strength and density, and thermal processing, and illustrates a process flowchart for the production of CIP parts.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003413
EISBN: 978-1-62708-195-5
... Disadvantages of liquid molding Versus open mold/wet laminating Reduction/elimination of VOC emissions Improved uniformity, quality assurance Two cosmetic faces Reduced labor costs Higher investment costs–tooling and equipment Versus prepreg processing/vacuum bag and autoclave Reduced...
Abstract
Resin transfer molding and structural reaction injection molding belong to a family, sometimes denoted as liquid composite molding. This article provides information on the characteristics and automotive and aerospace applications of liquid composite molding. It reviews techniques that use hard tooling and positive (superatmospheric) pressures to produce structures. The techniques include vacuum-assisted resin injection, vacuum infusion, resin-film infusion, and injection-compression molding. The article provides an overview of the materials that are commonly used together with some of processing characteristics that are important to processing speed and part quality. It concludes with a discussion on design guidelines for the liquid composite molding.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003434
EISBN: 978-1-62708-195-5
... drinking fountains. Portable vacuum systems must be approved and have special filters if outlets are within the controlled area. During controlled-contamination-area shutdowns, uncured parts, prepreg, and film adhesive materials are placed in a sealed bag and stored in the freezer or in the controlled...
Abstract
In-process inspection during composite material lay-up is essential if the structural, dimensional, and environmental performance designed into a part is to be consistently achieved. This article discusses the requirements to be met by the facilities and equipment to produce high-quality composites. It reviews the procedures that are allowed and prohibited in controlled-contamination areas of lay-up. The article emphasizes significant areas, such as material control and lay-up process, in which quality-control personnel can be effective in preventing production problems. It concludes with a discussion on automated tape laying and fiber placement, as well as the numerically aided lay-up process.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003053
EISBN: 978-1-62708-200-6
.... These are especially important parameters for automated uniaxial pressing and dry bag isostatic pressing, because it is difficult to externally assist the packing of the dies prior to compression. Wet bag isostatic pressing molds and hot press dies are normally filled manually, independent from the machines...
Abstract
Ceramic-forming processes usually start with a powder which is then compacted into a porous shape, achieving maximum particle packing density with a high degree of uniformity. This article compares and contrasts several forming processes, including mechanical consolidation, dry pressing, cold isostatic pressing, slip casting, tape casting, roll compaction, extrusion, and injection molding. It describes the advantages, equipment and tooling, and material requirements of green machining, the machining of ceramics in an unfired state with the intent of producing parts as close to as possible to their final shape. The article also provides useful information on drying methods, shrinkage, and defects as well as the removal of organic processing aids such as dispersants, binders, plasticizers, and lubricants.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003487
EISBN: 978-1-62708-195-5
... and improved composed principally of polymeric esters, in antistatic agents. Agents that, when added to a removal of volatiles from the resin. Lay-up is which the recurring ester groups are an inte- molding material or applied to the surface of usually vacuum bagged with a bleeder and re- gral part of the main...
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003395
EISBN: 978-1-62708-195-5
... processes, vacuum-assisted resin- transfer molding (VARTM), or structural reaction injection molding (SRIM), when used with preforms, can result in reduced handling time of the resin. The dry reinforcement is placed in the desired orientation, and then the resin is introduced. The ability of the resin...
Abstract
Designing composites for structural performance initially involves meeting a set of desired performance specifications at a minimum cost. This article discusses the factors that are considered in designing the manufacturing of polymeric composites. It describes the various aspects of manufacturing, forming process, and post-processing and fabrication for designing the composites.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002492
EISBN: 978-1-62708-194-8
... a combination fiber chopper and spray gun. The chopped roving and liquid resin are sprayed on the mold surface to build up the required wall thickness. Curing under pressure can be achieved by placing pressure bags over the surface of the molding. Filament Winding Filament winding is used...
Abstract
The goal of design is to improve the overall performance of the metal or ceramic matrix rather than to create a material with different response than the base matrix. This article focuses on the design for manufacturing polymeric composites. Specially developed methods including contact molding, compression-type molding, resin-injection molding, and pultrusion are described. The article also discusses the various factors to be considered in designing for composite manufacturing.
Book
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.9781627081955
EISBN: 978-1-62708-195-5
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002465
EISBN: 978-1-62708-194-8
... to structural shape As molded and surface coated Hot press/diffusion bond Hot, mold of metal/reinforced fiber Aluminum, titanium, or stainless steel foil or thin sheet Glass, carbon, boron, graphite depending on metal melt temperature Mold temperature pressure/inside sealed vacuum retort Machine...
Abstract
This article describes the interaction of composition, manufacturing process, and composite properties of composites. The manufacturing process includes resin-matrix, metal-matrix, and carbon/carbon matrix processing. The article discusses various mechanical properties of composites. It explores how variations in the composition, manufacturing, shop process instructions, and loading/environmental conditions can affect the use of a composite product in a performance/service life operation.
1