Skip Nav Destination
Close Modal
By
Graham K. Hubler, James K. Hirvonen
By
Kazuhisa Miyoshi, Phillip B. Abel
By
Donald M. Mattox
By
Virginia Osterman
By
L. Scott Chumbley, Larry D. Hanke
By
G.T. Murray, T.A. Lograsso
Search Results for
vacuum atomization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 766
Search Results for vacuum atomization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Thin-foil transmission electron micrograph of vacuum-atomized Al-8Fe powder...
Available to PurchasePublished: 01 December 2004
Fig. 38 Thin-foil transmission electron micrograph of vacuum-atomized Al-8Fe powder. The green powder compact was electropolished at −30 °C (−22 °F) in 950 mL methanol, 50 mL HClO 4 , and 15 mL HNO 3 . Magnification: 6300×. Courtesy of W.J. Boettinger, L. Bendersky, and J.G. Early. Source
More
Image
Gas atomization equipment diagrams illustrating (a) top-pour vacuum inducti...
Available to Purchase
in Metal Additive Manufacturing Supply Chain, Powder Production, and Materials Life-Cycle Management
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 3 Gas atomization equipment diagrams illustrating (a) top-pour vacuum induction melt gas atomization, (b) electrode induction melt gas atomization, (c) and plasma atomization. Source: Carpenter Additive
More
Image
Water-atomized, vacuum-annealed tool steel powder (M2), Irregular particles...
Available to Purchase
in Metallography and Microstructures of Powder Metallurgy Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 12 Water-atomized, vacuum-annealed tool steel powder (M2), Irregular particles with a fine carbide phase. Equal parts 4% picral and 4% nital. 645×
More
Image
Particle size distribution from typical vacuum inert gas atomized productio...
Available to Purchase
in Metal Additive Manufacturing Supply Chain, Powder Production, and Materials Life-Cycle Management
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 7 Particle size distribution from typical vacuum inert gas atomized production, showing the relative ranges typically used in different additive manufacturing modalities: binder jet, laser powder-bed fusion (L-PBF), electron beam powder-bed fusion (EB-PBF), and directed-energy deposition
More
Image
Examples of atomized powders. (a) Water-atomized copper. (b) Water-atomized...
Available to PurchasePublished: 30 September 2015
Fig. 3 Examples of atomized powders. (a) Water-atomized copper. (b) Water-atomized iron, apparent density 2.9 g/cm 3 . (c) Air-atomized aluminum. (d) Helium-atomized aluminum. (e) Nitrogen-atomized high-speed steel. (f) Vacuum-atomized IN-100 superalloy. (g) Plasma rotating electrode process
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006084
EISBN: 978-1-62708-175-7
... and research methods. This article describes the key process variables and production factors for the industrial methods: two-fluid, centrifugal, vacuum or soluble-gas, and ultrasonic atomization. It also reviews the effect of atomization methods and process variables on key powder characteristics...
Abstract
Atomization is the dominant method for producing metal and prealloyed powders from aluminum, brass, iron, low-alloy steels, stainless steels, tool steels, superalloys, titanium alloys, and other alloys. The general types of atomization processes encompass a number of industrial and research methods. This article describes the key process variables and production factors for the industrial methods: two-fluid, centrifugal, vacuum or soluble-gas, and ultrasonic atomization. It also reviews the effect of atomization methods and process variables on key powder characteristics such as the average particle size, particle size distribution or screen analysis, particle shape, chemical composition, and microstructure.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002122
EISBN: 978-1-62708-188-7
... reviews the properties of ASP and CPM and summarizes the procedures to heat treat ASP high-speed tool steels. It discusses the processing steps, advantages, and applications of the FULDENS process that uses water-atomized powders compacted by vacuum sintering. The article also provides information...
Abstract
This article describes procedures for producing powder metallurgy high-speed tool steel powder by inert-gas atomization, followed by compaction by hot isostatic pressing. These include the anti-segregation process (ASP) and the crucible particle metallurgy (CPM) process. The article reviews the properties of ASP and CPM and summarizes the procedures to heat treat ASP high-speed tool steels. It discusses the processing steps, advantages, and applications of the FULDENS process that uses water-atomized powders compacted by vacuum sintering. The article also provides information on the applications of tool steels.
Book Chapter
Ion-Beam-Assisted Deposition
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001290
EISBN: 978-1-62708-170-2
... Abstract Ion-beam-assisted deposition (IBAD) refers to the process wherein evaporated atoms produced by physical vapor deposition are simultaneously struck by an independently generated flux of ions. This article discusses the energy utilization of this process. It describes the physical...
Abstract
Ion-beam-assisted deposition (IBAD) refers to the process wherein evaporated atoms produced by physical vapor deposition are simultaneously struck by an independently generated flux of ions. This article discusses the energy utilization of this process. It describes the physical and chemical processes occurring at the film-vacuum interface during IBAD and dual-ion-beam sputtering with illustrations. The article also reviews the methods used for large-area, high-volume implementation of IBAD and the modes of film formation for IBAD. It contains a table that presents information on deposition and synthesis of inorganic compounds by IBAD and concludes with a discussion on the improved coating properties, advantages, limitations, and applications of IBAD.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001774
EISBN: 978-1-62708-178-8
... Abstract In secondary ion mass spectroscopy (SIMS), an energetic beam of focused ions is directed at the sample surface in a high or ultrahigh vacuum (UHV) environment. The transfer of momentum from the impinging primary ions to the sample surface causes sputtering of surface atoms...
Abstract
In secondary ion mass spectroscopy (SIMS), an energetic beam of focused ions is directed at the sample surface in a high or ultrahigh vacuum (UHV) environment. The transfer of momentum from the impinging primary ions to the sample surface causes sputtering of surface atoms and molecules. This article focuses on the principles and applications of high sputter rate dynamic SIMS for depth profiling and bulk impurity analysis. It provides information on broad-beam instruments, ion microprobes, and ion microscopes, detailing their system components with illustrations. The article graphically illustrates the SIMS spectra and depth profiles of various materials. The quantitative analysis of ion-implantation profiles, instrumental features required for secondary ion imaging, the analysis of nonmetallic samples, detection sensitivity, and the applications of SIMS are also discussed.
Book Chapter
Adhesion, Friction, and Wear in Low-Pressure and Vacuum Environments
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006375
EISBN: 978-1-62708-192-4
... and Vacuum Environments Adhesion, a manifestation of atomic bond strength over an appreciable area, has many causes, including deformation, fracture processes involved in cold welding, interface failure, and wear ( Ref 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23...
Abstract
This article discusses the adhesion behavior of materials in low-pressure and vacuum environments and provides a schematic illustration of an apparatus for measuring adhesion and friction in ultrahigh vacuum. It describes the effects of low-oxygen pressures and vacuum environments on adhesion and friction, as well as the effects of defined exposure to oxygen on friction. The article discusses the wear of various metals in contact with ceramics, and alloying element effects on friction, wear, and transfer of materials. It also describes studies that characterize the contributions of surface contamination and chemical changes to tribology in low-pressure and vacuum environments.
Book Chapter
Vacuum Deposition, Reactive Evaporation, and Gas Evaporation
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001287
EISBN: 978-1-62708-170-2
... condensation thermal vaporization vacuum deposition VACUUM DEPOSITION, or vacuum evaporation, is a physical vapor deposition process in which the atoms or molecules from a vaporization source reach the substrate without colliding with residual gas molecules. Generally, the vaporization source is one...
Abstract
This article discusses the fundamentals of thermal vaporization and condensation and provides information on the various vaporization sources and methods of vacuum deposition. It offers an overview of reactive evaporation and its deposition techniques. The article also explains the advantages, limitations, and applications of vacuum deposition processes. Finally, it provides information on the gas evaporation process, its processing chamber, and related systems.
Image
Adhesion and surface energy of contacting materials: atomically clean diamo...
Available to Purchase
in Adhesion, Friction, and Wear in Low-Pressure and Vacuum Environments
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 4 Adhesion and surface energy of contacting materials: atomically clean diamond, atomically clean sapphire, diamond with adsorbed species, and sapphire with adsorbed species in contact with atomically clean aluminum in ultrahigh vacuum (10 −8 Pa). Δγ: the surface energy difference
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001769
EISBN: 978-1-62708-178-8
... of the periodic arrangement of atoms in the surface. This periodic arrangement can be conceptualized as parallel rows of atoms analogous to grating lines in a diffraction grating. Thus, the diffraction in LEED occurs from rows, unlike x-ray diffraction, which can be considered as occurring from planes...
Abstract
Low-energy electron diffraction (LEED) is a technique for investigating the crystallography of surfaces and overlayers adsorbed on surfaces. This article describes the principles of diffraction from surfaces, and elucidates the method of sample preparation to achieve diffraction patterns. The article describes the limitations of surface sensitive electron diffraction and discusses the applications of LEED with examples.
Book Chapter
Physical Vapor Deposition
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... in a hard vacuum of 0.1 to 10 mPa, at which pressures the mean free path of a gas atom, that is, the average distance the atom travels before colliding with another atom, is greater than the chamber dimensions. An atom evaporating from a source travels in a straight line; thus the process is line-of-sight...
Abstract
Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion implantation in the context of research and development applications.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006655
EISBN: 978-1-62708-213-6
... to determine that the sample surface was clean. The vacuum chamber also has capabilities for ion beam etching of the surface and for contact angle measurements in situ. The experiment consisted of ion beam etching the surface to make it atomically rough, observing the changes in the diffraction pattern...
Abstract
Low-energy electron diffraction (LEED) is a technique for investigating the crystallography of surfaces and overlayers adsorbed on surfaces. This article provides a brief account of LEED, covering the principles and measurements of diffraction from surfaces. Some of the processes involved in sample preparation are described. In addition, the article discusses the limitations of surface-sensitive electron diffraction and the applications of LEED with examples.
Book Chapter
Vacuum Heat Treating Additively Manufactured Parts
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006561
EISBN: 978-1-62708-290-7
... asperities at the contact site. However, when heated in a vacuum, surface oxides diffuse into the bulk material or decompose at the processing temperatures, thereby eliminating such rough surfaces that limit direct surface-to-surface contact. With the two materials in direct contact, atoms can diffuse across...
Abstract
This article focuses on various vacuum heat treating processes for additively manufactured parts, namely annealing and stress relieving, solid-solution annealing, and solution treating and aging. It addresses several practical concerns involved in using vacuum heat treatment, including temperature measurement, unvented cavities, loose powder, and direct contact of metals in the high-temperature vacuum. The article provides a short discussion on sintering and evaporation of metals in vacuum furnaces.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
..., size restrictions, vacuum compatibility Atomic force microscopy Physical morphology High Z -resolution, ambient conditions Feature size limits, image artifacts Energy-dispersive x-ray spectroscopy Elemental chemical Rapid data collection, mapping Spatial resolution, potentially destructive...
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Book Chapter
Scanning Electron Microscopy for Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... be remembered when using low-vacuum or variable-pressure SEMs, where only a BSE signal is available for imaging in the variable-pressure mode. This is especially true if the sample is not single phase, because the difference in BSE emission due to varying atomic number adds an additional complication...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Book Chapter
Preparation and Characterization of Pure Metals
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001115
EISBN: 978-1-62708-162-7
... of gas atoms through the liquid to the surface Presence or absence of any stirring action that might enhance transport of gas atoms in the liquid phase Composition of the starting material Vacuum melting can result in a purification process based on preferential evaporation of solute...
Abstract
The electronic microcircuit industry has placed severe demands on metal suppliers to provide metals of the highest reproducible purity attainable as a result of the constant quest for the true values of physical and chemical properties of metals. This article describes the commonly used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio test methods used to characterize purity. Tables list the values for resistance ratios of zone-refined metals and their corresponding chemical compositions, and provide an example of the detection of impurities to concentrations in the parts per billion range, utilizing a combination of the glow discharge mass spectroscopy method and Leco combustion methods.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... and sputter coating. Evaporation coating consists of heating a metal filament to a high temperature in a vacuum chamber to cause evaporation to occur. Atoms that leave the filament travel a line-of-sight trajectory to the surface of the sample where they are adsorbed. A thin coating consisting of a few...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
1