Skip Nav Destination
Close Modal
By
Donald M. Mattox
By
Virginia Osterman
By
Egbert Baake
By
Real Fradette, Virginia Osterman, William R. Jones, Jon Dossett
By
Kanchan M. Kelkar, Suhas V. Patankar, Alec Mitchell, Ramesh S. Minisandram, Ashish D. Patel
By
Kazuhisa Miyoshi, Phillip B. Abel
Search Results for
vacuum
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1788
Search Results for vacuum
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Vacuum Arc Remelting
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005202
EISBN: 978-1-62708-187-0
... Abstract The vacuum arc remelting (VAR) process is widely used to improve the cleanliness and refine the structure of standard air melted or vacuum induction melted (VIM) ingots. It is also used in the triplex production of superalloys. This article illustrates the VAR process...
Abstract
The vacuum arc remelting (VAR) process is widely used to improve the cleanliness and refine the structure of standard air melted or vacuum induction melted (VIM) ingots. It is also used in the triplex production of superalloys. This article illustrates the VAR process and the capabilities and variables of the process. It also presents a discussion on the melt solidification, resulting structure, and ingot defects. The article concludes with a discussion on the VAR process of superalloy and titanium and titanium alloy.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005276
EISBN: 978-1-62708-187-0
... Abstract Vacuum high-pressure die casting uses a vacuum pump to evacuate the air and gases from the die casting die cavity and metal delivery system before and during the injection of molten metal. This article describes the conventional die casting, vacuum die casting, and high-pressure die...
Abstract
Vacuum high-pressure die casting uses a vacuum pump to evacuate the air and gases from the die casting die cavity and metal delivery system before and during the injection of molten metal. This article describes the conventional die casting, vacuum die casting, and high-pressure die casting processes.
Book Chapter
Vacuum Induction Melting
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005200
EISBN: 978-1-62708-187-0
... Abstract Vacuum induction melting (VIM) is often done as a primary melting operation followed by secondary melting (remelting) operations. This article presents the process description of VIM and illustrates potential processing routes for products, which are cast from VIM ingots or electrodes...
Abstract
Vacuum induction melting (VIM) is often done as a primary melting operation followed by secondary melting (remelting) operations. This article presents the process description of VIM and illustrates potential processing routes for products, which are cast from VIM ingots or electrodes. It describes the VIM refinement process, which includes the removal of trace elements, nitrogen and hydrogen degassing, and deoxidation. The article concludes with information on the production of nonferrous materials by VIM.
Book Chapter
Vacuum Deposition, Reactive Evaporation, and Gas Evaporation
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001287
EISBN: 978-1-62708-170-2
... Abstract This article discusses the fundamentals of thermal vaporization and condensation and provides information on the various vaporization sources and methods of vacuum deposition. It offers an overview of reactive evaporation and its deposition techniques. The article also explains...
Abstract
This article discusses the fundamentals of thermal vaporization and condensation and provides information on the various vaporization sources and methods of vacuum deposition. It offers an overview of reactive evaporation and its deposition techniques. The article also explains the advantages, limitations, and applications of vacuum deposition processes. Finally, it provides information on the gas evaporation process, its processing chamber, and related systems.
Book Chapter
Vacuum Heat Treating Additively Manufactured Parts
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006561
EISBN: 978-1-62708-290-7
... Abstract This article focuses on various vacuum heat treating processes for additively manufactured parts, namely annealing and stress relieving, solid-solution annealing, and solution treating and aging. It addresses several practical concerns involved in using vacuum heat treatment, including...
Abstract
This article focuses on various vacuum heat treating processes for additively manufactured parts, namely annealing and stress relieving, solid-solution annealing, and solution treating and aging. It addresses several practical concerns involved in using vacuum heat treatment, including temperature measurement, unvented cavities, loose powder, and direct contact of metals in the high-temperature vacuum. The article provides a short discussion on sintering and evaporation of metals in vacuum furnaces.
Book Chapter
Components, Design, and Operation of Vacuum Induction Crucible Furnaces
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005900
EISBN: 978-1-62708-167-2
... Abstract This article discusses the principle, coil design, types and operation of a vacuum induction furnace. It describes the operation parameters that should be considered during the functioning of the induction furnace. electroslag remelting induction coils vacuum arc remelting...
Abstract
This article discusses the principle, coil design, types and operation of a vacuum induction furnace. It describes the operation parameters that should be considered during the functioning of the induction furnace.
Book Chapter
Vacuum Heat Treating Processes
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005955
EISBN: 978-1-62708-166-5
... Abstract Vacuum heat treating consists of thermally treating metals and alloys in cylindrical steel chambers that have been pumped down to less than normal atmospheric pressure. This article provides a detailed account of the operations and designs of vacuum furnaces, discussing their pressure...
Abstract
Vacuum heat treating consists of thermally treating metals and alloys in cylindrical steel chambers that have been pumped down to less than normal atmospheric pressure. This article provides a detailed account of the operations and designs of vacuum furnaces, discussing their pressure levels, resistance heating elements, quenching systems, work load support, pumping systems, and temperature control systems. It describes the classification of instruments used for measuring and recording pressure inside a vacuum processing chamber. Common devices include hydrostatic measuring devices and devices for measuring thermal and electrical conductivity. The article also describes the applications of the vacuum heat treating process, namely, vacuum nitriding and vacuum carburizing. Finally, it reviews the heat treating process of tool steels, stainless steels, Inconel 718, and titanium and its alloys.
Book Chapter
Computational Analysis of the Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) Processes
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005510
EISBN: 978-1-62708-197-9
... Abstract This article provides an overview of the studies on computational modeling of the vacuum arc remelting (VAR) and electroslag remelting (ESR) processes. These models involve the axisymmetric analysis of the electromagnetic, flow, heat-transfer, and phase-change phenomena to predict...
Abstract
This article provides an overview of the studies on computational modeling of the vacuum arc remelting (VAR) and electroslag remelting (ESR) processes. These models involve the axisymmetric analysis of the electromagnetic, flow, heat-transfer, and phase-change phenomena to predict the pool shape and thermal history of an ingot using two-dimensional axisymmetric models for VAR and ESR. Analysis of segregation of alloying elements during solidification that gives rise to macrolevel compositional nonuniformity in titanium alloy ingots is also described. The article discusses the important features of the control-volume-based computational method to review the unique aspects of the processes. Measurement of the properties of alloys and slags is explained and an analysis of the process variants for improving the predictive accuracy of the models is presented.
Book Chapter
Adhesion, Friction, and Wear in Low-Pressure and Vacuum Environments
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006375
EISBN: 978-1-62708-192-4
... Abstract This article discusses the adhesion behavior of materials in low-pressure and vacuum environments and provides a schematic illustration of an apparatus for measuring adhesion and friction in ultrahigh vacuum. It describes the effects of low-oxygen pressures and vacuum environments...
Abstract
This article discusses the adhesion behavior of materials in low-pressure and vacuum environments and provides a schematic illustration of an apparatus for measuring adhesion and friction in ultrahigh vacuum. It describes the effects of low-oxygen pressures and vacuum environments on adhesion and friction, as well as the effects of defined exposure to oxygen on friction. The article discusses the wear of various metals in contact with ceramics, and alloying element effects on friction, wear, and transfer of materials. It also describes studies that characterize the contributions of surface contamination and chemical changes to tribology in low-pressure and vacuum environments.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003414
EISBN: 978-1-62708-195-5
... Abstract Vacuum infusion is a resin injection technique derived from resin transfer molding. This article discusses the characteristics of the technique and its applications. It presents the theory and background of the technique and provides an illustration of how parts are made. The article...
Abstract
Vacuum infusion is a resin injection technique derived from resin transfer molding. This article discusses the characteristics of the technique and its applications. It presents the theory and background of the technique and provides an illustration of how parts are made. The article provides information on the equipment and material used for vacuum infusion. It describes the mechanical properties of components and summarizes the influence of production on the properties. The article concludes with a discussion on design guidelines.
Image
Reduced pressure test apparatus. 1, vacuum chamber; 2, vacuum gage; 3, pres...
Available to PurchasePublished: 01 December 2008
Fig. 16 Reduced pressure test apparatus. 1, vacuum chamber; 2, vacuum gage; 3, pressure regulator; 4, vacuum pump
More
Image
Shape casting with vacuum induction melting, (a) Computer-controlled vacuum...
Available to PurchasePublished: 01 December 2008
Fig. 5 Shape casting with vacuum induction melting, (a) Computer-controlled vacuum furnace with mold chamber. (b) Precision-cast turbocharger wheels for automotive engines. From left: mold with integrated crucible, bar stick, cast part, machined turbocharger wheel
More
Image
High-vacuum bottom-loading vacuum furnace for medium-production application...
Available to PurchasePublished: 01 January 1993
Image
Alpha case after vacuum heat treatment of uncoated Ti-6Al-4V. Vacuum heat t...
Available to PurchasePublished: 01 June 2016
Fig. 8 Alpha case after vacuum heat treatment of uncoated Ti-6Al-4V. Vacuum heat treated at 700 °C (1300 °F) for 30 min at 10 −4 torr. Alpha-case depth: 10 μm (0.0004 in.). The α-case depth is clearly defined by the solid white band on the surface. Preparation: Kroll’s reagent and 2% ammonium
More
Image
Typical hot wall vacuum furnaces. (a) Bell-type vacuum furnace. (b) Pit-typ...
Available to PurchasePublished: 01 June 2016
Fig. 22 Typical hot wall vacuum furnaces. (a) Bell-type vacuum furnace. (b) Pit-type furnace. (c) Vertical two-zone furnace. (d) Horizontal, two-zone, hot wall vacuum furnace. Source: Ref 29
More
Image
Comparison of the volume of the vacuum chambers of the vacuum induction mel...
Available to Purchase
in Components, Design, and Operation of Vacuum Induction Crucible Furnaces
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 10 Comparison of the volume of the vacuum chambers of the vacuum induction melting (VIM) and vacuum induction degassing and pouring (VIDP) furnaces. Courtesy of ALD Vacuum Technologies GmbH
More
Image
Vacuum and air/vacuum/air fatigue crack propagation tests. Results for allo...
Available to PurchasePublished: 01 January 1996
Fig. 18 Vacuum and air/vacuum/air fatigue crack propagation tests. Results for alloy II-S at 427 °C and R = 0.1. Environmental and closure effects can be separated.
More
Image
Horizontally-loading vacuum furnaces. (a) Single-chamber vacuum furnace wit...
Available to PurchasePublished: 30 September 2014
Fig. 3 Horizontally-loading vacuum furnaces. (a) Single-chamber vacuum furnace with gas/fan quenching. (b) Two-chamber vacuum furnace. One chamber is for heating; the integral second chamber is for gas/fan quenching. The unit is loaded/unloaded from the quenching chamber. (c) Same as (b
More
Image
Production-scale 225 Mg (250 ton) vacuum hot press. Courtesy of Vacuum Indu...
Available to PurchasePublished: 01 January 1990
Fig. 12 Production-scale 225 Mg (250 ton) vacuum hot press. Courtesy of Vacuum Industries, Inc.
More
Image
Typical fatigue fracture appearance of Astroloy tested in air and vacuum at...
Available to PurchasePublished: 01 January 1987
Fig. 88 Typical fatigue fracture appearance of Astroloy tested in air and vacuum at 650 °C (1200 °F). In air (upper portion of fractograph) the fracture exhibits a predominantly intergranular character; in vacuum (lower half of fractograph) the fracture is transgranular. Source: Ref 244
More
1