Skip Nav Destination
Close Modal
Search Results for
upset welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 310 Search Results for
upset welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005633
EISBN: 978-1-62708-174-0
... Abstract Flash welding, also called flash butt welding, is a resistance welding process in which a butt joint weld is produced by a flashing action and by the application of pressure. The flash welding process consists of preweld preparation, flashing, upsetting (forging), and postweld heat...
Abstract
Flash welding, also called flash butt welding, is a resistance welding process in which a butt joint weld is produced by a flashing action and by the application of pressure. The flash welding process consists of preweld preparation, flashing, upsetting (forging), and postweld heat treatment. This article provides an overview of both flash welding and upset welding and describes the various process and failure origins of flash welding as well as the equipment used. It also explains the characteristics and advantages of solid-state upset welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001367
EISBN: 978-1-62708-173-3
... Abstract Upset welding (UW) is a resistance welding process utilizing both heat and deformation to form a weld. A wide variety of shapes and materials can be joined using upset welding in either a single-pulse or continuous mode. This article discusses the advantages and disadvantages of upset...
Abstract
Upset welding (UW) is a resistance welding process utilizing both heat and deformation to form a weld. A wide variety of shapes and materials can be joined using upset welding in either a single-pulse or continuous mode. This article discusses the advantages and disadvantages of upset welding, as well as the types of welds. The advantages include speed, ease of control, fewer defects, enhanced weld properties, simplicity of equipment, less-strict composition requirements, and ability to join difficult-to-weld materials. The article reviews the role of a homopolar generator as an alternative method for supplying the electrical current for upset welding.
Image
Published: 31 October 2011
Image
Published: 31 October 2011
Fig. 1 Flash and upset welding process features (top) with typical profiles of resulting joints (bottom). (a) In flash welding, heating from an arc occurs before the upsetting operation is initiated. (b) In the upset welding process, electric current is applied while the pieces are pressed
More
Image
in Procedure Development and Practice Considerations for Resistance Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 21 Weld obtained when using the upset welding process. (a) Workpieces securely clamped in current-carrying dies while pressure and current are applied. (b) Finished weld produced after welding operation is completed
More
Image
Published: 01 January 1993
Image
Published: 31 October 2011
Fig. 10 Upset weld configurations in butt welds of pipe with an outside diameter of 25 mm (1 in.) and a wall of 3 mm (0.1 in.). Upset has been machined from the outside surface (on left). The internal upset configuration was controlled by adjusting weld parameters and joint design. (a) Minimum
More
Image
Published: 01 January 1993
Fig. 1 Upset weld configurations in butt welds of pipe with an outside diameter of 25 mm (1 in.) and a wall of 3 mm (0.1 in.). Upset has been machined from the outside surface (on left). The internal upset configuration was controlled by adjusting weld parameters and joint design. (a) Minimum
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003209
EISBN: 978-1-62708-199-3
... Abstract This article describes the mechanism, advantages and disadvantages, fundamentals, capabilities, variations, equipment used, and weldability of metals in solid-state welding processes, including diffusion bonding, explosion welding, friction welding, ultrasonic welding, upset welding...
Abstract
This article describes the mechanism, advantages and disadvantages, fundamentals, capabilities, variations, equipment used, and weldability of metals in solid-state welding processes, including diffusion bonding, explosion welding, friction welding, ultrasonic welding, upset welding, and deformation welding.
Image
Published: 31 October 2011
Fig. 11 Hardness across upset welds and in materials of various strengths compared to fusion weld hardness. Note that the weld area hardness (and therefore strength) is greater for the upset welds than for the fusion weld.
More
Image
Published: 01 January 1993
Fig. 3 Hardness across upset welds and in materials of various strengths compared to fusion weld hardness. Note that the weld area hardness (and therefore strength) is greater for the upset welds than for the fusion weld.
More
Image
Published: 31 October 2011
Fig. 18 (a) Schematic outline of cold butt welding with multiple upset. (b) Cold-butt-welded copper bar with a cross section of 3 × 5 mm (0.12 × 0.20 in.). Source: Ref 16
More
Image
Published: 01 January 2002
Fig. 60 Schematic of a hook crack in a pipe caused by pipe-wall delamination after high-frequency welding. The “hook” has turned outward to follow the direction of metal flow in the outer portion of the upset weld zone.
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005567
EISBN: 978-1-62708-174-0
... sequence is: Apply sufficient pressure to firmly seat the faying surfaces against one another. Heat the joint to welding temperature. Rapidly apply additional pressure to mechanically upset the weld zone. Typical weld durations are 1 to 2 min. A less common procedure is to initially apply...
Abstract
Forge welding is a solid-state joining process in which the workpieces are heated to the welding temperature and then sufficient blows or force are applied to cause permanent deformation and bonding at the faying surfaces. Coextrusion welding is a solid-state process that produces a weld by heating two or more workpieces to the welding temperature and forcing them through an extrusion die. This article illustrates typical joint configurations used for manual and automatic forge welding applications. It provides information on the common metals welded by coextrusion welding, such as low-carbon steel, aluminum, copper, and copper alloys. The article also explains the common coextrusion behaviors.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001377
EISBN: 978-1-62708-173-3
... to upset the weld zone. Typical weld durations are 1 to 2 min. A less common procedure is to initially apply high pressure and permit deformation to occur during the heating cycle. Most forge welding employs sufficient pressure to upset the surface until the increase in the surface area is 125% or more...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001443
EISBN: 978-1-62708-173-3
... cross-wire welding flash welding high-frequency resistance welding projection welding resistance seam welding resistance spot welding resistance welding seam welding machines stainless steels upset welding welding electrodes RESISTANCE WELDING (RW) encompasses a group of processes...
Abstract
Resistance welding (RW) encompasses a group of processes in which the heat for welding is generated by the resistance to the flow of electrical current through the parts being joined. The three major resistance welding processes are resistance spot welding (RSW), resistance seam welding (RSEW), and projection welding (PW). This article addresses the considerations for using these processes to join specific types of materials. It discusses the process variations, applicability, advantages, and limitations of these resistance welding processes. The article provides information on flash welding, high-frequency resistance welding, and capacitor discharge stud welding. It concludes with a discussion on resistance welding of stainless steels, aluminum alloys, and copper and copper alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006514
EISBN: 978-1-62708-207-5
... Abstract The resistance welding processes commonly employed for joining aluminum are resistance spot welding, resistance seam welding, resistance roll welding, upset and flash welding for butt joining welding, and high-frequency resistance welding. This article discusses the general factors...
Abstract
The resistance welding processes commonly employed for joining aluminum are resistance spot welding, resistance seam welding, resistance roll welding, upset and flash welding for butt joining welding, and high-frequency resistance welding. This article discusses the general factors affecting resistance welding: electrical and thermal conductivities, rising temperature, plastic range, shrinkage, and surface oxide. It reviews the weldability of base materials such as Alclad alloys and aluminum metal-matrix composites. The article describes the joint design and welding procedures for resistance spot welding, as well as the joint type, equipment, and welding procedures for seam and roll spot welding. It concludes with information on flash welding, high-frequency welding, and cross-wire welding.
Image
Published: 01 January 2002
Fig. 57 Upset butt welded steel wire showing typical acceptable burrs on the welds. Dimensions given in inches
More
Image
Published: 01 January 1993
Fig. 4 Upset plug weld for canister closure. (a) Design of weld joint. (b) Metallographic section showing solid-state weld
More
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds. arc welding brittle fracture electrogas welds...
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.
1