1-20 of 43

Search Results for unreinforced engineering thermoplastics

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003002
EISBN: 978-1-62708-200-6
... mechanical properties reinforced engineering thermoplastics thermoset-matrix unidirectional advanced composites thermosets unreinforced engineering thermoplastics Properties of thermoplastics Table 1 Properties of thermoplastics Room-temperature data for unreinforced, general-purpose grades...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
..., cellulose electrical 125 115 Polyphenylene sulfide; unreinforced 124 … Polyphenylene sulfide; 40% glass reinforced 123 … Chlorinated polyvinyl chloride 122 111 Nylon, mineral reinforced 121 119 Polyester, thermoplastic, PBT; unreinforced 120 117 Polyester, thermoplastic, PET...
Book Chapter

By Peter Martin
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
..., and the most significant influences of structure on those properties are then discussed. A variety of engineering thermoplastics, including some that are regarded as high-performance thermoplastics, are covered in this article. In addition, a few examples of commodity thermoplastics and biodegradable...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003471
EISBN: 978-1-62708-195-5
... involved variations on the following processing sequence. First, a virgin composite, either short- or continuous-fiber-reinforced, is shredded, cut, and/or ground into relatively small pieces. This regrind is then compounded with virgin unreinforced thermoplastic. The thus-reformulated material...
Book Chapter

Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003447
EISBN: 978-1-62708-195-5
... in Table 4 and shown in Fig. 15 to 24 include unreinforced and reinforced polyamide resin systems. Physical properties and service characteristics of thermoplastic polyamide nylon 6/6 resin and fiber-resin composites Table 4 Physical properties and service characteristics of thermoplastic...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003032
EISBN: 978-1-62708-200-6
... the mechanical properties, physical properties, and service characteristics of representative composite fiber-resin combinations, including thermoplastic matrix composites such as thermoplastic polyester resins, thermoplastic polyamide resins, and thermoplastic polysulfone resins, and thermoset matrix composites...
Book Chapter

By Lee McKague
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003368
EISBN: 978-1-62708-195-5
... to impact damage at ambient temperatures. Most of the many distinct thermoplastic polymers have found commodity applications that typically have modest service temperature requirements. Less than a dozen polymers have been considered for engineering applications at higher temperatures...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... review of thermoplastic and thermoset plastics is in order. Since the molecular structure and arrangement plays such an important role in how the material will process and function, the reader is encouraged to do a thorough investigation ( Ref 2 ). Additionally, the article “ Engineering Plastics...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003009
EISBN: 978-1-62708-200-6
... Abstract Advanced thermoplastics are stiff, moldable plastics that compete with traditional engineering thermoplastics and thermosets owing to their good tensile, compressive, impact, and shear strength, electrical properties, and corrosion resistance. This article discusses commercial forms...
Book Chapter

By J.R. Davis
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... Abstract The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003010
EISBN: 978-1-62708-200-6
...% of the total composition. General Characteristics Thermoset engineering plastics compete with metals, ceramics, and engineering thermoplastics. Compared with metals, they possess corrosion resistance, lighter weight, and sound and thermal insulating properties, and they can be processed at lower...
Book Chapter

By B. Tomas Åström
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003419
EISBN: 978-1-62708-195-5
..., to first consider what influence the matrix type has on composite properties, processability, and cost. There are small differences in the engineering properties of neat (unreinforced) thermosets and thermoplastics, although thermosets tend to be somewhat stiffer and more tolerant of elevated...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003425
EISBN: 978-1-62708-195-5
..., fracture toughness, and elevated temperature endurance. Advanced thermoplastic composites (ATPCs)— meltable engineering resin/fiber mixes typically containing approximately 60 vol% continuous carbon, glass, quartz, and so on—possess these properties, and because of their melt-fusible nature, lend...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
...-cellulose filler 55–90 8–13 0.5–1.0 10 1.5 175–240 25–35 70–100 10–15 115–120 HRM Thermoplastics ABS 35–45 5–7 15–60 1.7–2.2 0.25–0.32 25–50 4–7 … … 95–105 HRR CA 15–60 2–9 6–50 0.6–3.0 0.1–0.4 90–250 13–36 15–110 2–16 50–125 HRR CN 50–55 7–8 40–45 1.3–15.0...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
... and engineering thermoplastics. All test specimens are prepared by one source. This prevents any variations in mold design and/or molding conditions that would result from each participant molding individualized specimens. An alternative, small-scale repeatability study compares test data generated by two...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003020
EISBN: 978-1-62708-200-6
... that the mold, unlike a compression mold or thermoplastic stamping mold, is completely closed to defined stops prior to final part formation. This provides more reproducible part thickness and tends to minimize trimming and deflashing of the final part. Using a reinforcement preform allows the preplacement...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006935
EISBN: 978-1-62708-395-9
... of materials available, the overlap of performance among different processes is considerable. A compression-molded continuous-glass-reinforced thermoset could, for example, have a lower flexural modulus than an injection-molded unreinforced thermoplastic, depending on the choice of polymer. Process...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes. aerospace applications composite materials continuous-fiber...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003008
EISBN: 978-1-62708-200-6
... Abstract This article discusses the family characteristics, commercial forms, applications, resin grades, and mechanical and physical properties of traditional engineering thermoplastics in their neat (unmodified) form and as compounds and composites, namely, acrylonitrile-butadiene-styrenes...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003023
EISBN: 978-1-62708-200-6
... engineering plastics glass transition temperatures rheological analysis thermal analysis thermal properties thermogravimetric analysis thermomechanical analysis thermoplastic polymers thermosetting polymers thermostat resin systems THERMAL ANALYSIS provides a powerful tool for researchers...