Skip Nav Destination
Close Modal
Search Results for
unidirectional composites
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 313
Search Results for unidirectional composites
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 17 Specific wear rate and friction coefficient of unidirectional composites (see Table 4 ) in three orientations ( P , 1.5 N/mm 2 ; V , 0.83 m/s; distance slid, 16 km).
More
Image
Published: 01 January 1996
Fig. 22 The life of the unidirectional composite and the matrix as a function of maximum strain at 650 °C. Ref 36
More
Image
Published: 01 January 2000
Fig. 51 Fatigue life diagram of a unidirectional composite under cyclic tension in the fiber direction
More
Image
Published: 01 January 2001
Image
Published: 01 January 1996
Fig. 15 Fatigue strain-life data. (a) For unidirectional carbon-fiber composites with the same high-strain in different epoxy matrices. (b) Torsional shear strain-cycle diagram for various 0° fiber-reinforced composites. Source: Ref 39
More
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003383
EISBN: 978-1-62708-195-5
... describes the damping characteristics of unidirectional composites, when they are subjected to longitudinal shear, longitudinal tension/compression, and transverse tension/compression. It presents equations that govern the overall damping capacity of beams that are cut from laminated plates. The article...
Abstract
Damping is the energy dissipation properties of a material or system under cyclic stress. The vibrational and damping characteristics of composites are important in many applications, including ground-based and airborne vehicles, space structures, and sporting goods. This article describes the damping characteristics of unidirectional composites, when they are subjected to longitudinal shear, longitudinal tension/compression, and transverse tension/compression. It presents equations that govern the overall damping capacity of beams that are cut from laminated plates. The article discusses the effect of temperature on damping and provides information on the relationship between damping and strength.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003378
EISBN: 978-1-62708-195-5
... Abstract The properties of unidirectional composite (UDC) materials are quite different from those of conventional, metallic materials. This article provides information on the treatment of UDC stress-strain relations in the forms appropriate for analysis of thin plies of material. It explains...
Abstract
The properties of unidirectional composite (UDC) materials are quite different from those of conventional, metallic materials. This article provides information on the treatment of UDC stress-strain relations in the forms appropriate for analysis of thin plies of material. It explains the development of the relations between mid-surface strains and curvatures and membrane stress and moment resultants. The article discusses the properties, such as thermal expansion, moisture expansion, and conductivity, of symmetric laminates and unsymmetric laminates. It describes the distribution of temperature and moisture through the thickness of a laminate. Stresses caused due to mechanical loads, temperature, and moisture on the laminate are analyzed. The article concludes with information on interlaminar cracking, free-edge delamination, and transverse cracks of laminates.
Image
in Rayleigh Wave Nondestructive Evaluation for Defect Detection and Materials Characterization
> Nondestructive Evaluation of Materials
Published: 01 August 2018
Fig. 24 Experimental Rayleigh wave velocity for graphite-epoxy composites. B, unidirectional composites; C, (0/90) 64-plies laminate. Adapted from Ref 110
More
Image
Published: 01 January 2000
Fig. 6 Commonly observed, acceptable failure modes of (a) 0°, and (b) 90° carbon/epoxy unidirectional composites
More
Image
in Metal-Matrix Composites
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 6 Thermal expansion in the fiber direction of a P100 Gr/6061 Al single-ply unidirectional composite laminate. Source: Ref 25
More
Image
Published: 01 January 2000
Fig. 19 ASTM D 3518 [±45°] ns tension test specimen for evaluation of in-plane shear stress-strain response of unidirectional composites
More
Image
Published: 01 January 2001
Fig. 23 Variation of specific damping capacity (Ψ) with temperature for 0° unidirectional composite made from Epikote flexibilized resin. V f = 0.5
More
Image
Published: 01 January 2002
Fig. 19 Scanning electron microscope micrographs of worn surfaces of PA66 unidirectional composites. (a) Carbon fiber (parallel, P) showing fiber thinning, fiber fracture, fiber pulverization (left portion) and fiber matrix debonding (middle portion). (b) Aramid fiber (AF) in the normal
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003044
EISBN: 978-1-62708-200-6
... the material, the more limited the method of testing. A method that works adequately for chopped fiber composites may not work for unidirectional materials. A method that works for unidirectional materials probably will work well for all materials, although it may not always be the most cost effective...
Abstract
Testing of fiber-reinforced composite materials is performed to determine uniaxial tensile strength, Young's modulus, and Poisson's ratio relative to principal material directions, that helps in the prediction of the properties of laminates. Beginning with an overview of the fundamentals of tensile testing of fiber-reinforced composites, this article describes environmental exposures that often occur during specimen preparation and testing. These include exposures during specimen preparation, and planned exposure such as moisture, damage (impact), and thermal cycling techniques. The article also discusses the test procedures, recommended configurations, test specimen considerations, and safety requirements considered in the four major types of mechanical testing of polymer-matrix composites: tensile test, compression test, flexural test, and shear test.
Image
in Quantitative Characterization and Representation of Global Microstructural Geometry
> Metallography and Microstructures
Published: 01 December 2004
Fig. 19 Microstructure of a ceramic-matrix composite containing unidirectional continuous nicalon (SiC) fibers in MAS glass ceramic matrix observed in a transverse metallographic plane. An unbiased square counting frame consisting of two forbidden edges (solid line) and two permissible edges
More
Image
Published: 01 December 2004
Fig. 3 Unidirectional carbon fiber composite cross sections displaying carbon fiber types of similar strength and modulus but differing in fiber shape. (a) Cylindrical carbon fiber shape. Bright-field illumination, 50× objective. (b) Irregular bean-shaped fibers. Bright-field illumination, 25
More
Image
Published: 01 December 2004
Fig. 6 Entrapped air in a composite part made from unidirectional carbon fiber prepreg and woven fabric prepreg. Voids (dark areas) are shown mainly in the interply regions of the cross section. Bright-field illumination, 65 mm macrophotograph montage
More
Image
in Viewing Composite Specimens Using Reflected Light Microscopy[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 3 Composite part made from unidirectional prepreg showing a large quantity of voids in the cured structure. Bright-field illumination, 5× objective
More
Image
in Viewing Composite Specimens Using Reflected Light Microscopy[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 5 Bright-field illumination of a unidirectional carbon fiber composite showing the ply angles. Bright-field illumination, 10× objective (insets 25× objective)
More
Image
in Viewing Composite Specimens Using Reflected Light Microscopy[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 7 Cross section of a glass fabric/unidirectional carbon fiber composite part showing a bright-field illumination background and a polarized-light center inset. Note the lack of contrast of the glass fabric when viewed using bright-field illumination as compared to the carbon fibers. 10
More
1