1-20 of 343 Search Results for

uniaxial stress

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006442
EISBN: 978-1-62708-190-0
... under an applied external field. The relationship between uniaxial stress and angular-dependent strain is also discussed. The influence of stress on domain walls, and therefore, the generation of Barkhausen noise are described. The article also describes the directional and angular MBN measurements...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003298
EISBN: 978-1-62708-176-4
... soft materials. These techniques include the data-reduction techniques and assumptions required to use polymer pressure bars, the importance of sample-size considerations to polymer testing, and temperature-control methodologies to measure the high-strain-rate uniaxial stress response of polymers...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003293
EISBN: 978-1-62708-176-4
... son, Bertram Hopkinson. Based on these contributions and also on an important paper by R.M. Davies, H. Kolsky invented the split-Hopkinson pressure bar, which allows the deformation of a sample of a ductile material at a high strain rate, while maintaining a uniform uniaxial state of stress within...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005400
EISBN: 978-1-62708-196-2
...Abstract Abstract This article presents the Schmid's law that describes the response of crystal structures to loading. It describes the Taylor model to calculate the uniaxial yield stress of an isotropic face-centered cubic aggregate in terms of critical resolved shear stress. The article...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003261
EISBN: 978-1-62708-176-4
... uniaxial tension test uniaxial compression test plastic deformation strain tension specimen stress-strain curve ductility notch tensile tests compression tests Tensile load Compressive load Strain Rate THE MECHANICAL BEHAVIOR OF MATERIALS is described by their deformation and fracture...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003286
EISBN: 978-1-62708-176-4
... Testing” gives an overview of methods that may be used to rapidly generate creep data over several orders of magnitude in strain rate. Creep properties have for the most part been studied under uniaxial stress conditions in which the loading is applied parallel to the longitudinal axis...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003290
EISBN: 978-1-62708-176-4
... for stress relaxation testing used for the most convenient and common uniaxial tensile test. It concludes with information on compression testing, bend testing, torsion testing, and tests on springs. stress relaxation testing metallic materials long-term tests accelerated testing uniaxial tensile...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009224
EISBN: 978-1-62708-176-4
... indenter, materials with high values of Young's Modulus of Elasticity/uniaxial flow stress (E/Y) (metals) appear to develop a Hertzian stress distribution over the contact. In contrast, materials with low values of E/Y (glasses and polymers) develop a uniform distribution of stress. cone angle...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003666
EISBN: 978-1-62708-182-5
...Abstract Abstract This article describes the incubation, nucleation, and propagation of stress-corrosion cracking and how to evaluate it using standard tests. It discusses constant-strain, constant-load, bending, and uniaxial tension testing and how they compare when evaluating smooth...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005421
EISBN: 978-1-62708-196-2
... and microscale under uniaxial versus multiaxial tensile-stress conditions. Mesoscale models incorporate the influence of local microstructure and texture on cavitation. The article outlines the descriptions of cavity coalescence and shrinkage. It also describes the simulation of the tension test to predict...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004030
EISBN: 978-1-62708-185-6
... A 0 True axial stress (σ) σ = − P A = − P h A 0 h 0 = S h h 0 Effective stress ( σ ¯ ) σ ¯ = −σ Effective strain ( ε ¯ ) ε ¯ = −ε Uniaxial compression with friction correction Friction shear factor...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003296
EISBN: 978-1-62708-176-4
... preparation high rate uniaxial stress mechanical property tensile Hopkinson bar EXPERIMENTAL TECHNIQUES in characterizing the behavior of materials at high rates of strain are concerned with measuring the change in mechanical properties, such as yield strength, work hardening, and ductility, which can...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005181
EISBN: 978-1-62708-186-3
... Nominal (engineering) axial stress ( S ) S = − P A 0 True axial stress (σ) σ = − P A = − P h A 0 h 0 = S h h 0 Effective stress ( σ ¯ ) σ ¯ = −σ Effective strain ( ε ¯ ) ε ¯ = −ε Uniaxial...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003291
EISBN: 978-1-62708-176-4
... COMPONENTS is normally based on uniaxial data because all the material data is generated using uniaxial tests. However, typical industrial piping components operate under a multiaxial state of stress as a result of the internal pressure, temperature gradients, and system stresses. Very general effective...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006446
EISBN: 978-1-62708-190-0
... effect. Generally, the velocity under uniaxial normal stress (σ) is approximated as c (σ) ≈ c 0 + ησ, where c 0 is the velocity of the wave mode under consideration in the undeformed state of the material, and η = ∂ c /∂σ is the first-order acoustoelastic coefficient. Due to symmetry, shear...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005542
EISBN: 978-1-62708-197-9
... h 0 Effective stress σ ¯ σ ¯ = − σ Effective strain ε ¯ ε ¯ = − ε Uniaxial compression with friction correction Friction shear factor ( m s ) m s ≈ 3 μ where μ ≡ Coulomb coefficient of friction Friction...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003542
EISBN: 978-1-62708-180-1
... the piece is stressed and the fracture response to the stress, specifically, whether the piece broke in response to uniaxial tension, bending, or thermal shock. (Nominal external torsion and compression loading are excluded from this discussion, because the internal local state of stress that causes...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003302
EISBN: 978-1-62708-176-4
... directly to obtain a more accurate picture of the resistance of the specimen and the velocity of the indenter during the impact. This information is later used to calculate the strain rate of deformation and to verify the hardness measurements with the yield stress values obtained from uniaxial stress...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003299
EISBN: 978-1-62708-176-4
..., and reflected pulse, respectively; and c o is the longitudinal bar wave velocity, which is given by E o / ρ o , where ρ o is density. In deriving Eq 1 , 2 , 3 , the following assumptions are made: The specimen is under a uniform and uniaxial state of stress during...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005556
EISBN: 978-1-62708-174-0
... is that high-strength joints can be fabricated at relatively low temperatures (473 to 673 K) and pressures (100 to 200 MPa, or 15 to 30 ksi), because of the low dissociation temperature (<460 K) for silver oxide. Depending on the strength of the base metals and the method (hydrostatic or uniaxial stress...