Skip Nav Destination
Close Modal
Search Results for
uniaxial compression
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 352
Search Results for uniaxial compression
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003265
EISBN: 978-1-62708-176-4
... on the ASTM E 9, "Compression Testing of Metallic Materials at Room Temperature." It also reviews the factors that influence the generation of test data for tests conducted in accordance with the ASTM E 9 and the capabilities of conventional universal testing machines for compression testing. uniaxial...
Abstract
Compression tests are used for subscale testing and characterizing the mechanical behavior of anisotropic materials. This article discusses the characteristics of deformation during axial compression testing, including deformation modes, compressive properties, and compression-test deformation mechanics. It describes the procedures for the use of compression testing for the measurement of the deformation and fracture properties of materials. The article provides a detailed discussion on the technique involved in determining the stress-strain behavior of metallic materials based on the ASTM E 9, "Compression Testing of Metallic Materials at Room Temperature." It also reviews the factors that influence the generation of test data for tests conducted in accordance with the ASTM E 9 and the capabilities of conventional universal testing machines for compression testing.
Image
Published: 01 January 2001
Image
in Modeling of Microstructure Evolution during the Thermomechanical Processing of Nickel-Base Superalloys
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 21 Constitutive analysis for wrought Waspaloy deformed in uniaxial compression at 1177 °C. (a) Measured stress-strain curves and (b) apparent recovery rate for the two increments of deformation imposed at a strain rate of 0.1 s −1 . Source: Ref 38
More
Image
in Microstructure and Characterization of Compacted Graphite Iron
> Cast Iron Science and Technology
Published: 31 August 2017
Fig. 14 Uniaxial tension-compression fatigue results for grades 250 and 300 gray iron and grade 450 compacted graphite iron (CGI). Source: Ref 23
More
Image
Published: 01 January 2000
Fig. 7 Response of mortar tested under uniaxial and triaxial compression at about 500 s −1 on a 19 mm ( 3 4 in.) Hopkinson bar
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001375
EISBN: 978-1-62708-173-3
... interlayers. The article discusses welding methods, including uniaxial compression and hot isostatic pressing. The article provides information on the effect of base-metal surface finish on the tensile strength of joints solid-state welded using silver interlayers in tabular form and addresses the surface...
Abstract
This article describes low-temperature solid-state welding processes in relation to the interlayer fabrication method, welding method, and welding parameters. The interlayer fabrication method is used to produce vacuum coated interlayers, electrodeposited interlayers, and foil interlayers. The article discusses welding methods, including uniaxial compression and hot isostatic pressing. The article provides information on the effect of base-metal surface finish on the tensile strength of joints solid-state welded using silver interlayers in tabular form and addresses the surface cleaning steps of base-metals.
Image
in Quantitative Characterization and Representation of Global Microstructural Geometry
> Metallography and Microstructures
Published: 01 December 2004
load. (c) Marginal 3-D orientation distribution of the microcracks under uniaxial compression at 0.7 strain. (d) Marginal 3-D orientation distribution of the microcracks under uniaxial tension. Observe that majority of the microcracks are now perpendicular to the loading direction. For all
More
Image
Published: 01 January 2000
Fig. 11 Schematic of crack growth from preexisting flaws under (a) static and (b) dynamic uniaxial compressive loads
More
Image
Published: 01 January 2001
Fig. 2 Normalized buckling coefficient as function of percentage of ±45° plies. [±45/0/90] family laminate, square ( a/b = 1). Uniaxial compressive load
More
Image
Published: 01 January 1993
Fig. 2 Schematic of a typical vacuum furnace used for solid-state welding by uniaxial compression. Heating would be by either an induction coil or radiant elements as shown. The constraining fixture surrounding the specimen is used to prevent excessive deformation from base-metal yielding
More
Image
in Modeling of Microstructure Evolution during the Thermomechanical Processing of Nickel-Base Superalloys
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 8 (a),(b) Electron backscatter diffraction inverse-pole-figure map for Waspaloy ingot material that was deformed in uniaxial compression at 1120 °C, 0.01 s −1 to a true strain of 0.27. (c) Optical micrograph showing Waspaloy ingot material that was deformed at 1120 °C, 0.1 s −1
More
Image
in Modeling of Microstructure Evolution during the Thermomechanical Processing of Nickel-Base Superalloys
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 7 Electron backscatter diffraction inverse-pole-figure map for alloy 718 with an initial grain size of 50 µm deformed in uniaxial compression at 980 °C, 0.01 s −1 to a true strain of 0.4. Boundary misorientations are indicated in light gray (2°) to dark gray or red (12°) to black (≥15
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003299
EISBN: 978-1-62708-176-4
... established. Thus, the failure strength data obtained under these conditions does not represent the true uniaxial compressive strength of a ceramic. Ravichandran and Subhash ( Ref 3 ) demonstrated that if the impedance mismatch between a ceramic specimen and the steel bars is taken into account...
Abstract
Split-Hopkinson pressure bar (SHPB) testing is traditionally used for determining the plastic properties of metals (which are softer than the pressure bar material) at high strain rates. However, the use of this method for testing ceramic has various limitations. This article provides a discussion on the operational principle of the traditional SHPB technique and the relevant assumptions in the derivation of the stress-strain relationship. It describes the inherent limitations on the validity of these assumptions in testing ceramics and discusses the necessary modifications in SHPB design and test procedure for evaluating high-strength brittle ceramics. The article includes information on the maximum strain rate that can be obtained in ceramics using an SHPB and the necessity of incident pulse shaping. It also reviews the specimen design considerations, interpretation of experimental results obtained from SHPB testing of ceramics, and effectiveness of the proposed modifications.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004030
EISBN: 978-1-62708-185-6
... of isotropic material Variable or quantity Symbol or relation Uniaxial compression under uniform deformation conditions Initial sample dimensions Height ( h 0 ) Diameter ( d 0 ) Area ( A 0 ), A 0 = π d 0 2 /4 Instantaneous (final) sample dimensions Height ( h ) Diameter...
Abstract
This article contains nine tables that present useful formulas for deformation analysis and workability testing. The tables present formulas for effective stress, strain, and strain rate in arbitrary coordinates, principal, compression and tension testing of isotropic material. The article also provides formulas for flat rolling, conical-die extrusion, wire drawing, deep drawing of cups from sheet metal, and bending, and formulas for anisotropic sheet materials.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005181
EISBN: 978-1-62708-186-3
... material Table 3 Formulas for compression testing of isotropic material Variable or quantity Symbol or relation Uniaxial compression under uniform deformation conditions Initial sample dimensions Height ( h 0 ) Diameter ( d 0 ) Area ( A 0 ), A 0 = π d 0 2 /4...
Abstract
This article presents formulas for calculating the following: effective stress, strain, and strain rate (isotropic material) in arbitrary coordinates and in principal coordinates; compression testing, tension testing, and torsion testing of isotropic material; and Barlat's anisotropic yield function Yld2000-2d for plane-stress deformation of sheet material. It also contains formulas related to flat (sheet) rolling, conical-die extrusion, wire drawing, bending, and deep drawing of cups from sheet metal.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003261
EISBN: 978-1-62708-176-4
... Abstract This article focuses on mechanical behavior of materials under conditions of uniaxial tension and compression. The emphasis is on mechanical behavior during the engineering tension test, which is used to provide basic design information on the strength of materials and as an acceptance...
Abstract
This article focuses on mechanical behavior of materials under conditions of uniaxial tension and compression. The emphasis is on mechanical behavior during the engineering tension test, which is used to provide basic design information on the strength of materials and as an acceptance test for the specification of materials. The article presents mathematical expressions for a flow curve of many metals in the region of uniform plastic deformation. It explains that the rate at which strain is applied to the tension specimen has an important influence on the stress-strain curve. The point of necking at maximum load can be obtained from the true stress-true strain curve by finding the point on the curve having a subtangent of unity. The article concludes with an overview of the ductility measurements performed by notch tensile and compression tests.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009008
EISBN: 978-1-62708-185-6
... of interest. Attention must be given, then, to the validity of the workability test in simulating the type of fracture that occurs in the actual process. Most metalworking processes involve compressive deformation, and so the uniaxial compression test has been widely used for studying deformation behavior...
Abstract
A cylindrical specimen compressed with friction at the die surfaces does not remain cylindrical in shape but becomes bulged or barreled. Tensile stresses associated with the bulging surface make the upset test a candidate for workability testing. This article discusses test-specimen geometry and friction conditions; strain measurements; crack detection; and material inhomogeneities, which are to be considered for performing cold upset testing. It describes test characteristics in terms of deformation, free-surface strains, and stress states for performing cylindrical compression tests. The article illustrates the fracture loci in cylindrical, tapered, and flanged upset-test specimens of aluminum alloy and type 1045 cold-finished steel.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003301
EISBN: 978-1-62708-176-4
... in the incident tube reaches the Teflon (loading the sample radially). This method has been used to test several samples. In Fig. 7 , the response of a mortar sample tested in uniaxial compression is compared with another mortar sample tested in triaxial compression. These results demonstrate both the effect...
Abstract
Triaxial Hopkinson techniques can be used to simultaneously subject a sample to axial and lateral compressions. The lateral compression may be applied through a pneumatic pressure vessel or dynamically using a special Hopkinson technique. This article reviews these two techniques in detail. It illustrates a 75-mm Hopkinson system, particularly designed to test large samples of concrete, rock, polymeric composites, and other materials with relatively coarse microstructures. The article also provides information on the pneumatic pressure vessel for a 75-mm Hopkinson bar test system and the dynamic triaxial load cell on a 19-mm Hopkinson bar.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009012
EISBN: 978-1-62708-185-6
... be deformed. Elevated-temperature tensile testing is often used to assess superplasticity by determining the uniform deformation up to necking. Uniaxial Compression of Cylindrical Specimens Uniaxial compression of cylindrical specimens is another test by which the flow stress can be measured accurately...
Abstract
This article summarizes the types of hot working simulation tests such as hot tension, compression, and torsion testing used in the assessment of workability. It illustrates the use of hot torsion testing for the optimization of hot working processes. The article concludes with information on some hot torsion application examples.
1