1-20 of 457 Search Results for

ultrasonic cleaning

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001226
EISBN: 978-1-62708-170-2
... Abstract Ultrasonic cleaning involves the use of high-frequency sound waves that is above the upper range of human heating, or about 18 kHz, to remove a variety of contaminants from parts immersed in aqueous media. This article describes the process, design considerations and the equipment...
Image
Published: 01 January 1994
Fig. 2 Automated ultrasonic cleaning system. This system is designed to clean intricate metal hearing-aid components using a neutral-pH solution at 60 °C (140 °F) and three rinse stages at 70 °C (160 °F). Basket rotation (1 to 3 rpm) is used during each stage to ensure adequate cleaning More
Image
Published: 01 January 1987
Fig. 4 Fatigue precrack region shown in Fig. 3 . (a) Before ultrasonic cleaning in a heated Alconox solution for 30 min. (b) After ultrasonic cleaning More
Image
Published: 01 January 1987
Fig. 5 Effect of increasing the ultrasonic cleaning time in a heated Alconox solution. (a) 30 min. (b) 3.5 h. Note the dislodging of the inclusion (left side of fractograph) and chemical etching of the fracture surface. More
Image
Published: 15 January 2021
Fig. 8 Scanning electron microscopy image of ultrasonically cleaned fracture surface revealing corrosion debris and loose crystals More
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001221
EISBN: 978-1-62708-170-2
... compounds from magnetic particle and fluorescent penetrant inspection. The cleaning processes include emulsion cleaning, electrolytic alkaline cleaning, acid cleaning, solvent cleaning, vapor degreasing, alkaline cleaning, ultrasonic cleaning, and glass bead cleaning. The article provides guidelines...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... provides an overview of the various types of stainless steels and describes the commonly used cleaning methods, namely, alkaline cleaning, emulsion cleaning, solvent cleaning, vapor degreasing, ultrasonic cleaning, and acid cleaning. Finishing operations of stainless steels, such as grinding, polishing...
Image
Published: 01 December 2004
Fig. 7 Comparison of a yttria-stabilized zirconia microstructure in the as-polished (left) and ultrasonically cleaned (right) condition. The porosity increased by 450% after 16 min of ultrasonic cleaning. Due to the high density of the coating, the epoxy did not infiltrate the majority More
Image
Published: 01 January 1987
Fig. 3 Fracture toughness specimen that has been intentionally corroded in a 5% salt steam chamber for 6 h. (a) Before ultrasonic cleaning in a heated Alconox solution for 30 min. (b) After ultrasonic cleaning More
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001832
EISBN: 978-1-62708-181-8
... for screening as fracture surface coating materials. These inhibitor compounds were applied to fresh steel fracture surfaces and exposed to 100% relative humidity at 38 °C (100 °F) for 14 days. The coatings were removed by ultrasonic cleaning with the appropriate solvent, and the fracture surfaces were visually...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001269
EISBN: 978-1-62708-170-2
...-atmosphere techniques, such as Sendzimir oxidation/reduction method; other specialized methods, namely, fluxes, mechanical cleaning, and ultrasonic methods; or a combination of these. alkaline cleaning chemical pickling contaminant removal continuously applied coatings electrolytic cleaning...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003213
EISBN: 978-1-62708-199-3
... describes common cleaning processes, including alkaline, electrolytic, solvent, emulsion, molten salt bath, ultrasonic and acid cleaning as well as pickling and abrasive blasting. It also explains how to select the appropriate process for a given soil type and surface composition. abrasive blast...
Image
Published: 01 June 2012
Fig. 35 SEM image of fatigue striations in a Nitinol stent that fractured from ultrasonic cleaning-induced fatigue More
Image
Published: 01 June 2012
Fig. 14 SEM image of fatigue striations in a 316L stainless steel stent that fractured by ultrasonic cleaning-induced fatigue More
Image
Published: 01 June 2012
Fig. 27 SEM image of cleavage-like fatigue morphology in a 316L stainless steel stent that fractured from ultrasonic cleaning-induced fatigue More
Image
Published: 30 August 2021
Fig. 24 Scanning electron microscopy micrographs showing (a) nitinol stent strut cracking and (b) fatigue fracture surface after prolonged ultrasonic cleaning More
Image
Published: 01 June 2012
Fig. 7 Scanning electron microscopy images of cracks in laser-cut stents. The stainless steel stent in (a) has a fatigue crack that occurred during ultrasonic cleaning after laser cutting. The fracture in the Nitinol stent in (b) initiated in brittle, heat-affected material More
Image
Published: 01 January 1996
particles frome the crack after every 5000 compression cycles using ultrasonic cleaning. Source: Ref 4 More
Image
Published: 01 December 2004
to the high void content that entrapped polishing particles, which are carried to the next step. In some cases, even the use of ultrasonic cleaning cannot remove all of the entrapped polishing particles from the previous step. More
Image
Published: 01 January 1987
Fig. 1037 Composite of three low-magnification SEM fractographs of the surface of the fatigue fracture at A in Fig. 1035 after ultrasonic cleaning. A small portion of the attachment hole is visible along the top of this view. The lack of beach marks here is perhaps due to the brevity More