Skip Nav Destination
Close Modal
Search Results for
types of presses
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1981
Search Results for types of presses
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 1998
Image
Published: 01 January 2006
Fig. 8 Four types of gap-frame presses. (a) Open-back inclinable. (b) Bench press. (c) Adjustable-bed stationary. (d) Open-back stationary
More
Image
Published: 01 January 2006
Fig. 14 Four types of drive and clutch arrangements for mechanical presses. (a) Nongeared (or flywheel) drive. (b) Single-reduction, single-gear drive; clutch in gear. (c) Single-reduction, twin-gear drive; clutch on driveshaft. (d) Multiple-reduction, twin-gear drive; clutch on intermediate
More
Image
Published: 01 January 2006
Fig. 12 Types of press drives. The first three press drives, from the left, are called “single-end drives” because the crankshaft is driven from one end only. When the crankshaft is driven from both ends, the drive is termed a “twin drive” (far right).
More
Image
Published: 01 January 2006
Fig. 6 Three types of special punches and dies for press-brake forming. (a) Forming a channel in one stroke. (b) Forming a U-bend in one stroke. (c) Flattening to remove springback after U-bending
More
Image
Published: 01 January 2006
Image
Published: 01 January 1989
Fig. 22 Effect of bond type and grit size on G ratio in the grinding of hot-pressed silicon nitride for conditions shown in Fig. 21 . Grit sizes are 180 and 320. Wheel speed was 28 m/s (5500 sfm) at both low (2 mm 3 /s, mm; or 0.2 in. 3 /min, in.) and high (10 mm 3 /s, mm; or 1.0 in. 3 /min
More
Image
Published: 01 January 2005
Fig. 18 Schematic illustration of two types of hydraulic press drives. (a) Push-down drive. 1, Stationary cylinder crosshead; 2, Moving piston-ram assembly; 3, Stationary press bed with return cylinders. (b) Pull-down drive. 1, Movable cylinder-frame assembly; 2, Press bed with return
More
Image
Published: 01 January 2005
Image
Published: 15 June 2020
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005112
EISBN: 978-1-62708-186-3
... Abstract This article describes the various types of press construction and the factors that influence the selection of mechanically or hydraulically powered machines for producing parts from sheet metal. Presses are broadly classified, according to the type of frame used in their construction...
Abstract
This article describes the various types of press construction and the factors that influence the selection of mechanically or hydraulically powered machines for producing parts from sheet metal. Presses are broadly classified, according to the type of frame used in their construction, into two main groups: gap-frame presses and straight-side presses. The article describes the various components of mechanical presses and hydraulic presses. It discusses important factors, such as the size, force, energy, and speed requirements, that influence the selection of a press. The article describes the roles of automatic handling equipment that can be categorized as feeding equipment, unloading equipment, and transfer equipment. It concludes with information on the common types of high-production presses, such as dieing machines, multiple-slide machines, transfer presses, fine blanking presses, and flexible-die forming presses.
Image
Published: 01 January 2005
Fig. 10 Total press deflection versus press loading obtained under dynamic loading conditions for a 500 ton Erie scotch yoke type press. Source: Ref 7
More
Image
Published: 01 January 2005
Fig. 9 Amount and location of off-center load that causes tilting of the ram in eccentric one-point presses (a), eccentric two-point presses (b), and wedge-type presses (c). Source: Ref 6
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
... or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer...
Abstract
This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides information on the various drive systems and the auxiliary equipment. It describes the selection of die materials and lubricants for sheet metal forming and provides information on the lubrication mechanisms and selection with a list of lubricant types for forming of specific sheet materials of ferrous or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer forming, explosive forming, electromagnetic forming, and superplastic forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005121
EISBN: 978-1-62708-186-3
... selection for drawing. It explains the types of dies used for drawing sheet metal and the effects of process variables and material variables on deep drawing. The process variables that affect the success or failure of a deep-drawing operation include the punch and die radii, punch-to-die clearance, press...
Abstract
This article illustrates the mechanics of the deep drawing of a cylindrical cup. It discusses the fundamentals of drawing and drawability. Sheet metal is drawn in either hydraulic or mechanical presses. The article summarizes the defects in drawing and factors considered in press selection for drawing. It explains the types of dies used for drawing sheet metal and the effects of process variables and material variables on deep drawing. The process variables that affect the success or failure of a deep-drawing operation include the punch and die radii, punch-to-die clearance, press speed, lubrication, and type of restraint of metal flow used. The article describes the process of redrawing and ironing of metals. Drawing of workpieces with flanges and drawing of hemispheres are also illustrated. The article also provides information on the reducing of drawn shells, methods for expanding portions of drawn workpieces, trimming, and deep drawing using fluid-forming presses.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005113
EISBN: 978-1-62708-186-3
... Abstract Press brakes are a common and versatile type of equipment for bending metal by delivering an accurate vertical force in a confined longitudinal area. This article begins with a discussion on the design, widening methods, and types of materials used in press brakes. It focuses...
Abstract
Press brakes are a common and versatile type of equipment for bending metal by delivering an accurate vertical force in a confined longitudinal area. This article begins with a discussion on the design, widening methods, and types of materials used in press brakes. It focuses on the two basic drive systems used in operating press brakes, namely, mechanical and hydraulic drive systems. The article also provides an outline on the tooling associated with press-brakes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
... Abstract Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic, screw...
Abstract
Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic, screw-type, and multiple-ram). It further discusses the technologies used in the design of dies, terminology, and materials selection for dies for the most common hot-forging processes, particularly those using vertical presses, hammers, and horizontal forging machines. A brief section is included on computer-aided design in the forging industry. Additionally, the article reviews specific characteristics, process limitations, advantages, and disadvantages of the most common forging processes, namely hot upset forging, roll forging, radial forging, rotary forging, isothermal and hot-die forging, precision forging, and cold forging.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005177
EISBN: 978-1-62708-186-3
... Abstract This article discusses the principles of the press-brake forming process and its applicability with an example. It describes the types of press brakes and examines some considerations, which help in the selection of machine. The article provides information on flattening dies...
Abstract
This article discusses the principles of the press-brake forming process and its applicability with an example. It describes the types of press brakes and examines some considerations, which help in the selection of machine. The article provides information on flattening dies, gooseneck punches, wiping dies, channel dies, arbor-type punches, box-forming dies, curling dies, beading dies, and cam-driven dies, with illustrations. It discusses the tool material selection for various operations. The article explains the procedures used for producing different shapes, including simple boxlike parts, panels, flanged parts, architectural columns, fully closed parts, and semicircular parts. It examines the effect of work metal variables on results in press-brake operations. The article also reviews stock tolerances, design, and condition of machines and tools, which help in obtaining good dimensional accuracy.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003974
EISBN: 978-1-62708-185-6
... and compressor blades This section details the significant factors in the selection of forging equipment for a particular process. The article “Hammers and Presses for Forging” in this Volume contains information on the principles of operation and the capacities of various types of forging machines...
Abstract
This article discusses the significant factors in the selection of forging equipment for a particular process. It describes the characteristics of forging hydraulic presses, mechanical presses, screw presses, and hammers. The article discusses the significant characteristics of these machines that comprise all machine design and performance data, which are pertinent to the economic use of the machines, including the characteristics for load and energy, time-related characteristics, and characteristics for accuracy.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004005
EISBN: 978-1-62708-185-6
... Abstract Cold extrusion is a push-through compressive forming process with the starting material (billet/slug) at room temperature. This article provides information on the different types of steels that can be cold extruded. Mechanical presses and hydraulic presses that are specifically...
Abstract
Cold extrusion is a push-through compressive forming process with the starting material (billet/slug) at room temperature. This article provides information on the different types of steels that can be cold extruded. Mechanical presses and hydraulic presses that are specifically designed for cold extrusion with high rigidity, accurate alignment, and long working strokes are described. The article details the factors that are critical in cold extrusion: punch design, die design, and tool design. It summarizes the role of lubricants during extrusion of steel, such as soap lubricant and polymer lubricants. The article describes several procedures for extruding specific steel parts such as tubular parts and stepped shafts. It lists problems such as tool breakage and galling or scoring of tools and explains cold extrusion of aluminum, copper, and nickel alloy parts. The article also discusses the impact extrusion of magnesium alloys.
1