Skip Nav Destination
Close Modal
Search Results for
turbine blades
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 125 Search Results for
turbine blades
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001293
EISBN: 978-1-62708-170-2
... Heat Treating, Volume 4 of the ASM Handbook; see the articles “Boriding (Boronizing)” and “Thermoreactive Deposition/Diffusion Process,” respectively. Blades and vanes made from nickel- and cobalt-base superalloys that are used in the hot sections of all gas turbine engines are coated to...
Abstract
This article describes the widespread use of diffusion coatings for elevated-temperature protection of the turbine components for aircraft engines and gas turbines. The principles of pack diffusion coating, namely, aluminizing, chromizing, and siliconizing, are discussed. The article presents information on the coating formation mechanism of superalloys and explains the steps involved in a typical pack cementation process. It concludes with information on the processing procedures and properties of pack aluminized steels.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... in the hot sections of aero gas turbine blades to improve creep strength and prolong blade life from creep damage. High-temperature corrosion at aero-operating temperatures does not occur often, but ingestion of sea salt in naval aircraft can result in pitting and molten-salt corrosion and can...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000616
EISBN: 978-1-62708-181-8
... that fractured after 440 h of service, as the result of hot corrosion fatigue. Fracture was abrupt, with three blades being thrown off. See Fig. 841 for a view of the area near the arrow. See also Fig. 840 and 842 . 0.5× Fig. 840 Fracture surfaces of the two broken turbine-rotor blades...
Abstract
This article is an atlas of fractographs that covers nickel-base superalloys. The fractographs display the following: hydrogen-embrittlement fracture; segment of a fractured second-stage gas-turbine wheel; gas-producer turbine rotor cast; dendritic stress-rupture fracture surface; fatigue and creep fractures; simultaneous metallographic-fractographic evaluation; and effect of thermal cycling on fatigue fracture.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... The successful performance of ceramic components has been demonstrated in gas turbine engines. The major efforts have been directed toward turbine rotor development, specifically one-piece rotor/blade components of both radial inflow and axial flow configurations. Test experience in high-speed, high...
Abstract
The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine wheels, ceramic valves, and sliding parts.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003143
EISBN: 978-1-62708-199-3
... max others (each); 0.40 max others (total); 7.35 to 8.35 Al; 0.75 to 1.25 Mo; 0.75 to 1.25 V; bal Ti. Applications requiring high-strength, highly weldable materials with low density. It is presently used for fan blades for gas turbine engines. Ti-6-2-4-2; Ti-6-2-4-2S; Ti-6242; Ti6242S; 6-2-4...
Abstract
This article is a comprehensive collection of properties, compositions, and applications of standard grades of titanium and selected titanium alloys. It provides data regarding the common names, Unified Number System numbers, composition limits, typical uses with service temperatures, precautions in use, and general corrosion behavior of each. The applications of titanium alloys include aerospace, gas turbine engines and prostheses. Further, the article graphically presents a comparative study of fatigue, creep and tensile properties of various titanium alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications. advanced ceramics aerospace applications mineral processing equipment structural applications...
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... optimum tensile and fatigue properties. At one time, when wrought alloys were used for creep-limited applications, such as gas turbine high-pressure turbine blades, heat treatments different from those used for tensile-limited uses were applied to the same nominal alloy composition to maximize creep...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys generally used for high-temperature applications. Superalloys are used in aircraft, industrial, marine gas turbines, nuclear reactors, spacecraft structures, petrochemical production, orthopedic and dental prostheses, and environmental protection applications. This article discusses the material characteristics, phases, structures, and systems of superalloys. It describes the processing of superalloys, including primary and secondary melting, deformation processing (conversion), powder processing, investment casting, and joining methods. The article also describes the properties, microstructure, and thermal exposure of superalloys. It further discusses the effects of environmental factors on superalloys, including oxidation and hot corrosion. Protective coatings are also discussed. The article provides information on the mechanical properties and chemical composition of nickel, iron, and cobalt-base superalloys in both the cast and wrought forms.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003220
EISBN: 978-1-62708-199-3
... deposition coatings to protect turbine components. Shot peening is currently used to improve the mechanical properties of compressor blades, turbine-blade dovetails, and latter-stage turbine-blade airfoils by introducing favorable patterns of residual stress. Although all turbine-blade dovetails are...
Abstract
Although stainless steel is naturally passivated by exposure to air and other oxidizers, additional surface treatments are needed to prevent corrosion. Passivation, pickling, electropolishing, and mechanical cleaning are important surface treatments for the successful performance of stainless steel. This article describes the surface treatment of stainless steels including abrasive blast cleaning, acid pickling, salt bath descaling, passivation treatments, electropolishing, and the necessary coating processes involved. It also describes the surface treatment of heat-resistant alloys including metallic contaminant removal, tarnish removal, oxide and scale removal, finishing, and coating processes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003212
EISBN: 978-1-62708-199-3
... sulfidation, can be improved by selective surface treatments. Although the surface normally cannot be made totally independent from the bulk, the demands on surface and bulk properties are often quite different. For example, in the case of a turbine blade for a high-performance jet engine, the bulk of the...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... for steam turbines Cr-Mo-V steels 825–975 0.45–0.50 Pressure vessels and piping in nuclear reactors 316 stainless steel 650–750 0.35–0.40 Reactor skirts in nuclear reactors 316 stainless steel 850–950 0.45–0.55 Gas turbine blades Nickel-base superalloys 775–925 0.45–0.60 Burner...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... process industries, solids-transport systems are damaged by erosion ( Ref 24 , 38 – 40 ). In the aircraft industry, damage has occurred to aircraft engines ( Ref 18 , 20 , 41 – 43 ). The devices for generation of renewable energy (solar panels, turbines of hydroelectric power stations, windmill blades...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... rain erosion of solid materials, gas turbine blades, wind turbine blades, airplane components, and pipe-wall thinning in nuclear/fossil power plants. Because of the fundamental interest in the mechanics of fluids and solids, this topic has been reviewed by Heymann ( Ref 1 ) and Richman ( Ref 2 ) in the...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001307
EISBN: 978-1-62708-170-2
... diffusion coating are described in the Section “Vacuum and Controlled-Atmosphere Coating and Surface Modification” in this Volume. Shot peening is currently used to improve the mechanical properties of compressor blades, turbine-blade dovetails, and latter-stage turbine-blade airfoils by introducing...
Abstract
This article describes the methods for removing metallic contaminants, tarnish, and scale resulting from hot-working or heat-treating operations on nickel-, cobalt-, and iron-base heat-resistant alloys. It provides a brief description of applicable finishing and coating processes, including polishing, electroplating, ceramic coatings, diffusion coatings, and shot-peening. The article presents numerous examples that identify cleaning and finishing problems and the procedures used to solve them.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... general way, failure may be thought of as loss of function of the part. As an example, failure for a turbine blade within the hot section of an aeroturbine may be defined as the initiation of a microstructurally small crack; failure of the inlet turbine blade in a land-based power-generation turbine may...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003161
EISBN: 978-1-62708-199-3
... alloys are used for lens blocking tube bending, for anchoring chucks and fixtures, and for mounting thin sections such as gas turbine blades for machining. The eutectic fusible alloys, which can be tailored to give a specific melting point find application in temperature control devices and in fire...
Abstract
Fusible alloys, eutectic and noneutectic, include a group of binary, ternary, quaternary, and quinary alloys containing bismuth, lead, tin, cadmium, and indium that melt at relatively low temperatures. This article describes the composition and mechanical properties of these alloys and lists the values of their composition and melting temperatures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... several service-run cast IN-738 nickel-base superalloy gas turbine blades ( Fig. 1 ). Fractographic examination of a fracture surface using scanning electron microscopy (SEM) revealed an intergranular crack surface at the trailing edge ( Fig. 2 ). Comparison with images in an atlas of fracture features...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... protection and aluminum and silver as solid lubricants. Electron beam/physical vapor deposition (EB/PVD) is widely used in the gas turbine industry for applying MCrAlY metallic coatings on turbine blades and vanes for oxidation and corrosion protection. Zirconia thermal barrier coatings (TBCs) can also be...
Abstract
Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion implantation in the context of research and development applications.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005336
EISBN: 978-1-62708-187-0
... alloying elements results in materials with high incipient melting temperatures. Figure 1 compares the macro grain structures of equiaxed (conventional), directionally solidified, and single-crystal nickel-base alloy turbine blades. Table 2 lists several compositions of DS/SC alloys. Fig. 1...
Abstract
Nickel-base alloy castings are widely used in corrosive-media and high-temperature applications. This article begins with a discussion on the compositions of corrosion-resistant nickel-base casting alloys and heat-resistant nickel-base casting alloys. It describes the effects of aluminum and titanium on the structure and properties of nickel-base alloys. The article provides information on the melting, foundry, and pouring practices for nickel-base alloys. It describes the welding and heat treatment of the nickel-base casting alloys. The article concludes with information on the numerous applications of cast heat-resistant nickel-base alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005341
EISBN: 978-1-62708-187-0
... control arms Cast iron, engine Cast cylinder heads and cylinder blocks Sintered powder metal, drive line Sintered powder metal gears and clutch plates Cast titanium, turbine Cast gas turbine blades Forged and machined steel, transmission Machined forged steel transmission gears and shafts...
Abstract
The commonly used nondestructive testing of cast products include liquid penetrant inspection, radiographic inspection, fluoroscopic inspection and automated defect recognition, ultrasonic inspection, eddy current inspection, process-controlled resonant testing (PCRT), leak test, and electrical conductivity measurements. This article summarizes the application of these nondestructive tests to castings. It also tabulates a partial list of automotive part types and materials amenable to PCRT and lists the potential limitations to the use of PCRT.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003228
EISBN: 978-1-62708-199-3
... be open to surface. Not useful on porous materials or rough surfaces Turbine blades for surface cracks or porosity; grinding cracks Magnetic particles Leakage magnetic flux caused by surface or near-surface cracks, voids, inclusions, or material or geometry changes Inexpensive or moderate cost...
Abstract
This article reviews nondestructive testing (NDT) and inspection techniques, namely liquid penetrant, magnetic particle, ultrasonics, X-ray, eddy current, visual and radiography that are commonly used to detect and evaluate flaws or leaks in an engineering system. This article compares the merits and limitations of these techniques and describes the various uses of NDT, including leak detection, metrology, structure or microstructure characterization, stress-strain response determination, and rapid identification of metals and alloys.