Skip Nav Destination
Close Modal
Search Results for
turbine blade alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 395 Search Results for
turbine blade alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Wrought and P/M Superalloys
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 9 1000-h creep rupture strength of turbine rotor and compressor blade alloys. Source: Ref 14
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004133
EISBN: 978-1-62708-184-9
...) and ultrasupercritical (USC) power plants. These components include high-pressure steam piping and headers, superheater and reheater tubing, water wall tubing in the boiler, high-and intermediate-pressure rotors, rotating blades, and bolts in the turbine section. The article reviews the boiler alloys, used in SC and USC...
Abstract
This article describes the control of water chemistry in the steam cycle of a power plant for achieving corrosion control, deposition prevention, and higher cycle efficiency. It discusses the materials requirements of the components exposed to supercritical water in supercritical (SC) and ultrasupercritical (USC) power plants. These components include high-pressure steam piping and headers, superheater and reheater tubing, water wall tubing in the boiler, high-and intermediate-pressure rotors, rotating blades, and bolts in the turbine section. The article reviews the boiler alloys, used in SC and USC boilers, such as ferritic steels, austenitic steels, and nickel-base alloys. It provides information on the materials used in turbine applications such as ferritic rotor steels, turbine blade alloys, and bolting materials. The article explains various factors influencing steamside corrosion in SC power plants. It also deals with the role of overall efficiency in the USC power generation.
Image
Published: 01 January 1987
Fig. 105 Fracture surface of a cast aluminum alloy A357-T6 air-turbine blade. (a) Overall view of the fracture surface showing a large inclusion (dark) near the tip of the blade. Approximately 0.4×. (b) and (c) Decohesion at the interfaces between the inclusion and the aluminum matrix
More
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 9 Gamma-prime overaging in a nickel-base alloy turbine blade material. (a) SEM micrograph of the blade material, showing the breakdown of the eutectic gamma prime (5) and the spreading of the coarse gamma prime. Smaller particles of fine aging gamma prime (4), which would appear between
More
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 11 Hot corrosion attack of René 77 nickel-base alloy turbine blades. (a) Land-based, first-stage turbine blade. Notice deposit buildup, flaking, and splitting of leading edge. (b) Stationary vanes. (c) A land-based, first-stage gas turbine blade that had type 2 hot corrosion attack. (d
More
Image
Published: 01 January 2006
Fig. 11 Microstructures of nickel-base Alloy 713C turbine blades. (a) Original structure prior to service. (b) Coarsening of γ' precipitates and elimination of secondary γ' caused by 5000 h of service
More
Image
Published: 01 August 2018
Fig. 30 Digital radiograph of an aircraft engine turbine blade (nickel alloy precision casting) from an industrial computed tomography system
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... are exposed to elevated temperatures for long times. Typical metallurgical instabilities for turbine blades include carbide coarsening, gamma-prime formation, and hot corrosion. For steel alloys used for tubes and piping, carbide spheroidization and coalescence, sigma-phase formation, sensitization...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
..., and turbine cylinders, and only a few major changes have been introduced in the last two decades ( Ref 2 , 6 ). These materials are listed in Table 1 . Titanium alloy blades are slowly being introduced for the last low-pressure stages. Also, improved melting practices, control of inclusions and tramp...
Abstract
The steam turbine is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. This article discusses the primary corrosion mechanisms such as corrosion fatigue, stress-corrosion cracking (SCC), pitting, corrosion, and erosion-corrosion, in steam turbines. It illustrates the various causes of the corrosiveness of the steam turbine environments through a Mollier diagram. The article describes the four parts of design disciplines that affect turbine corrosion, namely, mechanical design, heat transfer, flow and thermodynamics, and physical shape. It lists the ways to control the steam and surface chemistry, and design and material improvements to minimize turbine corrosion.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
.... The effects of more modest temperature excursions may be limited to incipient melting, where only the grain boundaries melt as a result of local differences in alloy chemistry and surface tension at the grain boundaries. Example 3: Localized Melting of Turbine Blades An industrial gas turbine operating...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
...); typical examples are the aforementioned polymeric and elastomeric materials ( Ref 8 , 9 , 10 ) (mostly fan/inlet applications), honeycombs (NiCrAlY and FeCrAlY alloys) commonly used in low-pressure turbine applications where large radial displacements are experienced against shrouded blade seals...
Abstract
This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric plasma-sprayed abradable powders. Three classic examples of flame spray abradables are nickel-graphite powders, NiCrAl-bentonite powders, and NiCrFeAl-boron nitride powders. The article provides information on various abradable coating testing procedures, namely, abradable incursion testing; aging, corrosion, thermal cycle and thermal shock testing; hardness testing; and erosion resistance testing.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005737
EISBN: 978-1-62708-171-9
... of an airfoil section and a dovetail joint. The dovetail joint connects the blade to the turbine disk. The rotating blades are under more stress than the vanes due to the centrifugal forces exerted on the blades. Creep can be a problem, which is why new alloys and processing techniques have resulted...
Abstract
This article provides an overview of key thermal spray coatings used in compressors, combustors, and turbine sections of a power-generation gas turbine. It describes the critical components, including combustors, transition ducts, inlet nozzle guide vanes, and first-stage rotating airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001051
EISBN: 978-1-62708-161-0
... in turbine rotor blade cooling For the past 28 years, high-pressure turbine blades and vanes have been made from cast nickel-base superalloys. The higher-strength alloys are hardened by a combination of approximately 60 vol% γ′ [Ni 3 (Al,Ti)] precipitated in a γ matrix, with solid-solution...
Abstract
Directionally solidified (DS) and single-crystal (SX) superalloys and process technology are contributing to significant advances in turbine engine efficiency and durability. These gains are expected to arise from the development of higher creep strength and improved oxidation-resistant SX alloy compositions as well as from the development of SX casting and fabrication technology to utilize advanced transpiration-cooling schemes. This article provides a detailed discussion on the chemistry and castability of first- and second-generation DS and SX superalloys. It summarizes the chemistry modifications applied to MAR-M 247 to develop CMSX-2 with respect to function and objectives. The article also lists the nominal compositions of first- and second-generation DS and SX superalloys.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... of an industrial gas turbine blade. Below the tip, a coating is protecting the base metal. (b) Micrograph of the oxidation shown in (a). There is an external oxide E; a layer of fully oxidized base metal, F; an internally oxidized layer, I; and an alloy-depleted layer, A. The alloy-depleted layer includes...
Abstract
The corrosion issues in the compressor, combustor and turbine sections of industrial gas turbines used in steam production generally depend on the quality of the fuel, air, and water used in the engine than on the specific industrial application. This article focuses on the forms of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion are predominant. The effect of high-temperature oxidation and hot corrosion on the mechanical properties of superalloys is also discussed.
Image
Published: 30 August 2021
of mid-airfoil trailing edge of stage 1 blade. The sulfide particles are the light-gray particles in the alloy-depleted layer (light); the darker-gray particles near the surface are oxides. Etched with chromic acid, electrolytic. (d) Outer-airfoil trailing edge of second-stage turbine vane showing
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... alloying elements, depending on the manufacturer. High magnetomechanical damping is a key property of 12% Cr steel, which serves admirably as blading in high-purity steam. Some turbines have been fitted with precipitation-hardened stainless steel (17-4 PH) blades in the next-to-last row of the low-pressure...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Image
Published: 01 January 1987
Fig. 109 Porosity in a fracture of a cast aluminum alloy A357 blade from a small air turbine. The blade fractured by overload from an impact to its outer edge.
More
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007019
EISBN: 978-1-62708-439-0
... development of a 13 m (43 ft) wind turbine blade mold using AM ( Fig. 3 ) by Oak Ridge National Laboratory (ORNL) in collaboration with Sandia National Laboratories, TPI Composites, and National Renewable Energy Laboratory (NREL) ( Ref 23 ). At that time, several benefits were identified that would justify...
Abstract
Nuclear energy harnesses the power of atomic interactions, whether through the fission of large nuclei or the fusion of light elements. Additive manufacturing (AM) can play several roles in this sector and is actively being researched and applied, although challenges remain. This article provides a discussion of the opportunities, challenges, and example use cases of AM in the nuclear and wind energy sectors.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006378
EISBN: 978-1-62708-192-4
... of the distinctions between the different forms of erosion. It discusses steam turbine blade erosion, aircraft rain erosion, and rain erosion of wind turbine blades. The article describes the mechanisms of liquid impact erosion and time dependence of erosion rate. It reviews critical empirical observations regarding...
Abstract
Liquid impingement erosion has been defined as progressive loss of original material from a solid surface due to continued exposure to impacts by liquid drops or jets. This article focuses on the core nature of erosion by liquid impingement, due to the greater appreciation of the distinctions between the different forms of erosion. It discusses steam turbine blade erosion, aircraft rain erosion, and rain erosion of wind turbine blades. The article describes the mechanisms of liquid impact erosion and time dependence of erosion rate. It reviews critical empirical observations regarding both impingement variables (velocity, impact angle, droplet size, and physical properties of liquids) and erosion resistance of materials, including the correlation between erosion resistance and mechanical properties and the effects of alloying elements and microstructure. The article also provides information on the ways to combat erosion.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000616
EISBN: 978-1-62708-181-8
..., crescent-shaped fatigue-crack area visible in Fig. 835 , to ductile dimples. SEM, 225× Fig. 839 A gas-producer turbine rotor cast of alloy 713LC that fractured after 440 h of service, as the result of hot corrosion fatigue. Fracture was abrupt, with three blades being thrown off. See Fig. 841...
Abstract
This article is an atlas of fractographs that covers nickel-base superalloys. The fractographs display the following: hydrogen-embrittlement fracture; segment of a fractured second-stage gas-turbine wheel; gas-producer turbine rotor cast; dendritic stress-rupture fracture surface; fatigue and creep fractures; simultaneous metallographic-fractographic evaluation; and effect of thermal cycling on fatigue fracture.
1