1-20 of 491 Search Results for

tungsten electrode

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 31 October 2011
Fig. 8 Schematic of gas tungsten arc welding, direct current electrode negative More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
... Abstract The gas tungsten arc welding (GTAW) process derives the heat for welding from an electric arc established between a tungsten electrode and the part to be welded. This article provides a discussion on the basic operation principles, advantages, disadvantages, limitations...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005582
EISBN: 978-1-62708-174-0
... Abstract Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article focuses on the operating principles and procedures...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001357
EISBN: 978-1-62708-173-3
... Abstract Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article discusses the melt-in mode and the keyhole mode...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001336
EISBN: 978-1-62708-173-3
... Abstract The gas-tungsten arc welding (GTAW) process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. The arc discharge requires a flow of electrons from the cathode through the arc column to the anode. This article discusses two...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
... Abstract The melting temperature necessary to weld materials in the gas-tungsten arc welding (GTAW) process is obtained by maintaining an arc between a tungsten alloy electrode and a workpiece. This article discusses the advantages and limitations and applications of the GTAW process...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006515
EISBN: 978-1-62708-207-5
... produces an arc between a tungsten (nonconsumable) electrode and the weld pool by either alternating current (ac) or direct current (dc) electrode negative. The electrode negative mode generates the greatest amount of heat at the work, but it does not provide cleaning action on the work surface. The ac...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001362
EISBN: 978-1-62708-173-3
... . Separate power supplies are used for the PAW and the GMAW elements of the equipment. An arc is struck between the tungsten electrode and the workpiece in a similar fashion to that of a PAW system. The filler wire can be fed to the plasma arc, either with or without the GMAW arc established. Without power...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005664
EISBN: 978-1-62708-174-0
... Physics The GTAW process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. C.E. Jackson defined a welding arc as “a sustained electrical discharge through a high-temperature conducting plasma producing sufficient thermal energy so...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005598
EISBN: 978-1-62708-174-0
... for the PAW and the GMAW elements of the equipment (for descriptions of PAW and GMAW, see the articles Plasma Arc Welding and Gas Metal Arc Welding in this Volume). An arc is struck between the tungsten electrode and the workpiece in a similar fashion to that of a PAW system. The filler wire can be fed...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005580
EISBN: 978-1-62708-174-0
... that is manually or mechanically moved along the joint (or the work may be moved under a stationary electrode). The electrode may be a carbon or tungsten rod, of which the sole purpose is to carry the current and sustain the electric arc between its tip and the workpiece. Or, it may be a specially prepared rod...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003206
EISBN: 978-1-62708-199-3
... Abstract Arc welding methods can be classified into shielded metal arc welding, flux-cored arc welding, submerged arc welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-metal inert gas (MIG) welding, and electroslag and electrogas welding. This article provides...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... is cycled back and forth, the electricity is said to be operating as alternating current, or ac. Fig. 6 Schematic illustration summarizing the characteristics of the various operating modes for gas tungsten arc welding. DCSP (EN), direct current straight polarity (electrode negative); DCRP (EP...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001438
EISBN: 978-1-62708-173-3
... oxide film on the base metals. Electrodes Many of the standard tungsten or alloyed tungsten electrodes can be used in GTAW of copper and copper alloys. The selection factors normally considered for tungsten electrodes apply in general to the copper and copper alloys. Except as noted...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005643
EISBN: 978-1-62708-174-0
... welding Arc Alternating current with stabilization for aluminum, magnesium, and alloys; direct current; electrode negative for other metals Manual or automatic arc maintained between nonconsumable tungsten electrode and work; filler wire fed in separately Argon, helium, or argon-helium mixtures All...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002165
EISBN: 978-1-62708-188-7
... A. Polarity for various electrode-work combinations Table 1 Polarity for various electrode-work combinations Electrodematerials Work materials Steel Tungsten carbide Copper Aluminum Ni-base alloys Graphite +, − − − + +, − Copper + +, − − + + Cu-W...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
... Abstract Plasma melting is a material-processing technique in which the heat of thermal plasma is used to melt a material. This article discusses two typical design principles of plasma torches in the transferred mode: the tungsten tip design and the hollow copper electrode design. It describes...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006561
EISBN: 978-1-62708-210-5
... oil in milling, sawing, and drilling. Joining Gas or electric-arc welding can be applied. For gas welding, an oxyhydrogen flame is preferred. Inert-gas shielded-metallic arc welding is preferred, using either a non-consumable tungsten electrode or a consumable electrode. The use of flux-coated...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001472
EISBN: 978-1-62708-173-3
... solidification Overlap: The protrusion of weld metal beyond the toe, face, or root of the weld Tungsten inclusions: Particles from tungsten electrodes that result from improper gas-tungsten arc welding procedures Backing piece left on: Failure to remove material placed at the root of a weld joint...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... ( Ref 9 ). Also, because electrons are negatively charged, they inherently travel from the negative to the positive pole of the arc, and hence, welding polarity may have a large effect on the transfer of energy. Welding using direct current electrode negative (DCEN), such as with the gas tungsten arc...