1-20 of 120 Search Results for

tungsten carbide-cobalt

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... manufacture, composition, classifications, and physical and mechanical properties of cemented carbides. It describes the application of hard coatings to cemented carbides by physical or chemical vapor deposition (PVD or CVD). Tungsten carbide-cobalt alloys, submicron tungsten carbide-cobalt alloys, and alloys...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
... data. For extremely hostile environments, some non-ferrous tungsten carbide products (cobalt- and nickel-base products in the form of bare cast rods) are available. Also, several alternative composite materials, utilizing other carbides (for example, vanadium, titanium, or niobium), are available that...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003148
EISBN: 978-1-62708-199-3
... are carbon and tungsten contents (hence the amount and type of carbide formation in the microstructure during solidification). Table 2 lists the nominal compositions of various cobalt-base wear-resistant alloys. The type of wear encountered (e.g., abrasive wear, sliding wear, or erosive wear) in...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003188
EISBN: 978-1-62708-199-3
... of Group IVB-VIB metals are bound together or cemented by a ductile metal binder, usually cobalt or nickel. The first cemented carbide was produced in the 1920s and consisted of tungsten carbide (WC) with a cobalt binder. A remarkable feature of cemented carbides is that they can be tailored to...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000626
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of one specific type of cemented carbide, tungsten carbide. It also assists in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
... that rely on its high density, strength, and elastic modulus. Tungsten and tungsten alloys are used in mill products, as an alloying element in tool steels and superalloys, in tungsten carbide cutting tools, and in a variety of tungsten-base chemicals. In terms of refractory metal consumption...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003838
EISBN: 978-1-62708-183-2
... basic tungsten carbide-cobalt (WC-Co) materials and materials containing titanium carbide (TiC) and tantalum carbide (TaC). Table 1 indicates the physical properties of the commonly available refractory metal or hardmetal carbides used to make cemented carbides. Only two—WC and TiC—are used as true...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001323
EISBN: 978-1-62708-170-2
... carbide- cobalt Cobalt-chromium- nickel-tungsten Nickel- chromium- molybdenum Chromium carbide-Nichrome Iron-nickel- chromium Thickness buildup, mm (mils) >1.3 (>50) >1.3 (>50) >2.5 (>100) >0.6 mm (>25) >1.5 (>60) max Coating adhesion, MPa (psi) (ASTM C 633...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003817
EISBN: 978-1-62708-183-2
... these alloys is enhanced by the tungsten (and, in some cases, molybdenum) additions. However, in the high-carbon cobalt alloys, significant amounts of chromium and tungsten partition to the carbide precipitates, thus reducing their effective levels with regard to corrosion resistance. The cobalt...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003203
EISBN: 978-1-62708-199-3
... addition to γ′, second-phase strengthening from the γ″ (Ni 3 Nb) intermetallic and perhaps η (Ni 3 Ti). Cobalt-base superalloys may develop some precipitation strengthening from carbides (Cr 7 C 3 , M 23 C 6 ), but no intermetallic-phase strengthening equal to the γ′ strengthening in nickel-base alloys has...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003059
EISBN: 978-1-62708-200-6
... Abstract This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003158
EISBN: 978-1-62708-199-3
...-molybdenum, platinel, and tungsten-rhenium thermocouples. This article discusses the basic principles, classification, and properties of thermocouples, and the techniques for insulating and protecting thermocouple wires from the operating environment. electrical insulation environmental protection...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003975
EISBN: 978-1-62708-185-6
... fatigue, and mechanical fatigue. The article describes heat treating practices commonly employed for chromium- and tungsten-base AISI hot-work tool steels. It discusses the fabrication of impression dies, and the advantages and disadvantages of cast dies. The article concludes with a discussion on the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003157
EISBN: 978-1-62708-199-3
... refractory metals or their carbides include Mo-Ag, WC-Ag, W-Ag, WC-Cu, and W-C-Ag systems. Silver-base composites can be divided into two types: type 1 uses a pure element (nickel, tungsten, or molybdenum) or graphite as the dispersed phase; and type 2 composites use semirefractory oxides (CdO, SnO 2 , or...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003206
EISBN: 978-1-62708-199-3
... Abstract Arc welding methods can be classified into shielded metal arc welding, flux-cored arc welding, submerged arc welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-metal inert gas (MIG) welding, and electroslag and electrogas welding. This article provides...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006267
EISBN: 978-1-62708-169-6
.... Strengthening of cobalt-base alloys is accomplished by solid-solution alloying (e.g., molybdenum, tungsten, tantalum, and niobium) in combination with carbon to promote carbide precipitation. Compared to the wrought alloys, cast cobalt-base superalloys are characterized by higher contents of high-melting metals...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
..., titanium, and zirconium, as are M 7 C 3 and M 3 C 2 when carbon content is relatively high. The M 6 C carbide is found in alloys containing molybdenum and tungsten. For cobalt alloy castings used at high temperatures (i.e., turbine engine applications), the volume fraction, composition, distribution...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... applied to various steels, tungsten carbide/cobalt materials, and alloys of titanium, nickel, cobalt, aluminum, and chromium, although applications are restricted to temperatures below 250 °C (480 °F) for steels and 450 °C (840 °F) for carbides. Table 2 lists some of the applications for the ion...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003004
EISBN: 978-1-62708-200-6
... … 6.9 1050 9–10 Tungsten carbide (WC) 14.3 2780 5040 … … … … … 6.3 300 9–10 Zircon (ZrO 2 ·SiO 2 ) 4.5–4.7 2500 4530 1870 … … … 4 4.5 630 7.5 Zirconia (ZrO 2 ) 5.5–5.8 2700 4890 2400 3400 2.0 2.3 0.9 7.5 590 6.5 (a) Sublimes. (b) Decomposes. (c...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
... manufactured. The superior corrosion resistance and ability to form desired shapes by metal casting resulted in cobalt-chromium alloys displacing 316 stainless steel as the preferred metal for making such devices at that time. Easier access to molybdenum supply (compared with tungsten) in North America...