Skip Nav Destination
Close Modal
By
Lucas W. Koester, Leonard J. Bond, Peter C. Collins, Hossein Taheri, Timothy Bigelow
Search Results for
traverse speed
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 62 Search Results for
traverse speed
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003039
EISBN: 978-1-62708-200-6
... form of rovings or tows (fiber bundles) are wound over a rotating male mandrel. The filament-winding machine ( Fig. 1 ) traverses the wind eye at speeds that are synchronized with the mandrel rotation, controlling the winding angle of the reinforcement and the fiber lay-down rate. The mandrel can be...
Abstract
Filament winding is a process that allows the precise lay-down of continuous reinforcement in predescribed patterns at a high rate of speed. This article discusses the filament winding process and includes a comparison to other compacting and curing processes. The article describes design factors, and techniques to produce aerodynamic surfaces, improve surface smoothness, and avoid slipping and bridging of filament. The article discusses tooling and the equipment used in the filament winding process, namely, mandrel design, winding machines, tensioners, and ovens.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
... diameter—use one grade softer bond. For heavier stock removal—use a faster traverse speed and a slower work speed and/or increase the depth of cut. To improve workpiece finish—use a slower traverse speed and a faster work speed and/or decrease the depth of cut. When using wider wheels—use a softer...
Abstract
In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations, standard marking systems, abrasives, and bonding types. It compares bonded wheel grinding with abrasive belt grinding. The article reviews the types of grinding fluids and discusses their importance in grinding operations. It describes the specific grinding processes and provides recommendations for grinding and grinding wheels.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003190
EISBN: 978-1-62708-199-3
.../min (sfm) (c) 12–30 (40–100) 12–30 (40–100) Crossfeed per pass, mm (in.) 1–1.25 (0.040–0.050) 1–1.25 (0.040–0.050) Grinding fluid Highly sulfurized oil (d) Traverse cylindrical grinding Wheel A60IV C60HV Wheel speed, m/s (sfm) (b) 13–15 (2500–3000) 10–15 (2000–3000...
Abstract
Both surface finish and surface integrity must be defined, measured, and maintained within specified limits in the processing of any product. Surface texture is defined in terms of roughness, waviness, lay, and flaws. This article illustrates some of the designations of surface roughness and the symbols for defining lay and its direction. In addition, it describes the applications of surface integrity, typical surface integrity problems created in metal removal operations, and principal causes of surface alterations produced by machining processes. The article tabulates the effect of some machining methods on fatigue strength, and low-stress grinding procedures for steels, nickel-base high-temperature alloys, and titanium alloys.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004012
EISBN: 978-1-62708-185-6
... Tool Surface speed m/min sfm Thread rolling tools Flat traversing die 30–100 100–325 Cylindrical die 20–180 70–600 Lathe attachments 20–90 70–300 Thread cutting tools High speed steel tools 3–45 10–150 (a) Carbide tools 75 250 (a) Speed range for...
Abstract
Thread rolling is a cold-forming process for producing threads or other helical or annular forms by rolling the impression of hardened steel dies into the surface of a cylindrical or conical blank. Methods that use cylindrical dies are classified as radial infeed, tangential feed, through feed, planetary, and internal. This article focuses on the capabilities, limitations, and machines used for these methods. It describes the three characteristics, such as rollability, flaking, and seaming, used in evaluating and selecting metals for thread rolling. The article explores the factors affecting die life and explains the effect of thread form on processing. It provides information on various fluids used in thread rolling to cool the dies and the work and to improve the finish on the rolled products. The article provides a comparison between thread rolling and cutting, as well as between thread rolling and grinding.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
... surface layers are created for load-bearing, wear-resistant applications. The maximum melt depth is dependent on the absorbed power of the beam by the workpiece, the traverse speed, and the maximum temperature reached in the melt pool before unacceptable surface disruption occurs...
Abstract
This article reviews cleaning and finishing operations that have proven to be effective on titanium, its alloys, and semi-fabricated titanium products. It explains how to remove scale, tarnish films, grease, and other soils and how to achieve required finishes and/or improve wear and oxidation resistance through the use of polishing, buffing, and wire brushing operations. The article also covers a wide range of surface modification and coating processes, including ion implantation, diffusion, chemical and physical vapor deposition, plating, anodizing, and chemical conversion coatings as well as sprayed and sol-gel coatings and laser and electron-beam treatments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
... part will perform as it has in the past on the same part in the same environment, if the other deposition parameters, such as setup, traverse speed, and cooling, are unchanged. Other features of a coating that must be controlled include finished surface characteristics and part dimensions. Standard...
Abstract
This article introduces thermal spray coatings and describes the various types of coating processes and coating devices, including the flame spray, electric-arc spray, plasma spray, transferred plasma arc, high-velocity oxyfuel, and detonation gun. It provides information on the surface preparation methods and finishing treatments of coated parts. The article also explains the tests to evaluate the coating quality and the effects of coating structures and mechanical properties on coated parts. It concludes with a discussion on the uses of thermal spray coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003832
EISBN: 978-1-62708-183-2
... is a major cost factor and an important consideration in equipment selection. The traverse speed of the spray gun over the substrate surface will vary, depending on the operator and coating specification. A gun traverse speed of approximately 0.5 m/s (20 in./s) is typical, with upper spray rates for...
Abstract
This article provides a general technical description of thermal spray coatings used for corrosion protection in atmospheric and aqueous environments. It further discusses two basic coating approaches of corrosion protection, namely, the sacrificial coating of thermal spray aluminum (TSA) and thermal spray zinc (TSZ), and the barrier-type coating of corrosion-resistant materials. The emphasis is on sacrificial coatings. The article describes the steps involved in the application of TSA and TSZ: surface preparation, coating deposition, and postspray treatment. It discusses their field exposure tests and application history. The article also contains helpful information on the dense barrier coatings by high-velocity spraying processes along with their corrosion performance.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003042
EISBN: 978-1-62708-200-6
... related and totally independent of the material matrix. Therefore, the cutting tools, feed rates, and rotational speeds to be discussed are applicable to thermoplastic, bismaleimide, polyimide, and epoxy matrices, as well as to hybrids of composites and metals. Focused laser beams are used to...
Abstract
This article describes the use of conventional machining techniques, laser cutting and water-jet cutting for producing finished composite parts. It explains two representative polymer-matrix composites--graphite and aramid composites--and discusses the machining and drilling problems such as delamination and fiber or resin pullout. The article describes machining and drilling techniques and the necessary tools and cutting parameters. It presents a description of laser cutting. The article also provides information on the advantages, disadvantages, cutting characteristics, and applications of water-jet cutting and abrasive water-jet cutting.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003030
EISBN: 978-1-62708-200-6
... of plastic film and sheeting using a variety of test assemblies, as shown in Fig. 3 (where sled A and plane B are the materials of interest). In each case the force required to move a sled across a plane is measured. A test speed of 150 ± 30 mm/min (0.5 ± 0.1 ft/min) is specified. Both the force...
Abstract
Tribology is the science and technology of interacting surfaces in relative motion or, the study of friction, wear, and lubrication. This article focuses on friction and wear processes that aid in the evaluation and selection of materials, for polymers and some composites used in friction and wear applications. It provides information on friction, types of wear, and lubrication. The article includes a brief description of the friction and wear test methods, laboratory-scale friction, and wear testing, usually performed either to rank the performance of candidate materials for an application or to investigate a particular wear process. It describes the wear tests conducted with/without abrasives and explains the concept of PV limit (where P is contact pressure and V is velocity). The article concludes with references and tables of friction and wear test data for polymeric materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003236
EISBN: 978-1-62708-199-3
... voltage. The mechanical vibration (ultrasound) is introduced into a test piece through a couplant and travels by wave motion through the test piece at the speed of sound. When the pulse of ultrasound encounters a reflecting surface that is perpendicular to the direction of travel, ultrasonic energy is...
Abstract
Ultrasonic inspection is a nondestructive method in which beams of high-frequency acoustic energy are introduced into a material to detect surface and subsurface flaws, to measure the thickness of the material, and to measure the distance to a flaw. This article provides a detailed account of ultrasonic flaw detectors, including ultrasonic transducers and types of search units and couplants. The article describes pulse-echo and transmission inspection methods and data interpretation. The general characteristics of ultrasonic waves and the factors influencing ultrasonic inspection are also addressed. The article concludes with a review of the advantages and disadvantages of ultrasonic inspection compared with other methods applications of the technique.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
... into the surface. For best results, neutral or slightly carburizing flames should be used. A comparison of the heating rates of fuel gases can be made when certain fundamental properties of usable mixtures with oxygen are known. A parameter that correlates well with actual heating speed is...
Abstract
This article discusses the fundamentals and applications of localized heat treating methods: induction hardening and tempering, laser surface transformation hardening, and electron-beam heat treatment. The article provides information about equipment and describes the selection of frequency, power, duration of heating, and coil design for induction hardening. The article also discusses the scope, application, methods, and operation of flame hardening.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005680
EISBN: 978-1-62708-198-6
... welds ( Fig.c 6 ). The spot welds can be separated or overlap by as much as 50%. Fig. 6 Resistance welding processes. (a) Projection welding for sheet welding. (b) Resistance butt welding. (c) Resistance seam welding High-powered lasers are capable of producing high-speed and high...
Abstract
Microjoining methods are commonly used to fabricate medical components and devices. This article describes key challenges involved during microjoining of medical device components. The primary mechanisms used in microjoining for medical device applications include microresistance spot welding (MRSW) and laser welding. The article illustrates the fundamental principles involved in MRSW and laser welding. Most multicomponent medical devices implement microjoining techniques to join various forms of materials and geometries. The article presents examples of various microjoining methods used in medical device applications, including pacemaker and nitinol microscopic forceps.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
... International also thanks K. Subramanian, World Grinding Technology Center, Norton Company, for contributing new information for this article. As the grinding wheel is applied to the work material at a given wheel speed, work speed, and feedrate, there are generally four types of surface interactions taking...
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005288
EISBN: 978-1-62708-187-0
... tight temperature control in the holding furnace is essential for stable casting conditions and product quality, which is realized with the stepless power control of the inductor by the inverter technique. A typical casting speed of a horizontal strip caster is up to 200 mm/min (8 in./min), resulting...
Abstract
This article reviews the history and methods of copper alloy continuous casting. The methods include vertical continuous casting and horizontal continuous casting. The article discusses the upcasting methods used in vertical continuous casting and strip casting used in horizontal continuous casting. The upcasting methods include Outokumpu upcasting method, Rautomead upwards vertical casting, and pressure upcasting. The article also describes the methods and processes of wheel casting and Ohno continuous casting.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006465
EISBN: 978-1-62708-190-0
... Sigma, Inc. (specialist) PrintRite3D INSPECT Unknown N/A Thermocouple and high-speed camera Concept Laser QM melt pool Melt pool monitoring Laser power High-speed CMOS-camera EOS N/A Unknown N/A Camera DED DEMCON LCC 100 Melt pool monitoring Laser power Camera DM3D...
Abstract
Additive manufacturing (AM) is the process of joining materials to make parts from three-dimensional (3D) model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies. This article discusses various defects in AM components, such as porosity, inclusions, cracking, and residual stress, that can be avoided by using vendor recommended process parameters and approved materials. It describes the development of process-structure-property-performance modeling. The article explains the practical considerations in nondestructive evaluation for additively manufactured metallic parts. It also examines nondestructive testing (NDT) inspection and characterization methods for each of the manufacturing stages in their natural order. The article provides information on various inspection techniques for completed AM manufactured parts. The various electromagnetic and eddy current techniques that can be used to detect changes to nearsurface geometric anomalies or other defects are also discussed. These include ultrasonic techniques, radiographic techniques, and neutron imaging.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005226
EISBN: 978-1-62708-187-0
... relatively smooth, the particle may exhibit large spatial variations in microstructure as the solidification front changes speed across the powder due to the recalescence ( Ref 2 ). Alternatively, if solidification occurs through the propagation of a fine dendritic network across the powder, significant...
Abstract
Rapid solidification is a tool for modifying the microstructure of alloys that are obtained by ordinary casting. This article describes the fundamentals of the four microstructural changes, namely, microsegregation, identity of the primary phase, identity of the secondary phase, and formation of noncrystalline phases. It considers three factors: heat flow, thermodynamic constraints/conditions at the liquid-solid interfaces, and diffusional kinetics/microsegregation, to understand the fundamentals of these changes. These factors are described in detail.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003103
EISBN: 978-1-62708-199-3
... found to be much less in 51 xx series steels and much greater in 41 xx steels. Considering the hardenability effect in terms of quenching speed, the cooling rate (or quenching speed) required to produce 45 HRC is affected more by 0.15% carbon with certain combinations of alloying elements than it...
Abstract
Hardenability is usually the single most important factor in the selection of steel for heat-treated parts. The hardenability of steel is best assessed by studying the hardening response of the steel to cooling in a standardized configuration in which a variety of cooling rates can be easily and consistently reproduced from one test to another. These include the Jominy end-quench test, the carburized hardenability test, and the surface-area-center hardenability test. This article discusses the effects of varying carbon content as well as the influence of different alloying elements on hardenability of steels. The basic information needed before a steel with adequate hardenability can be specified as the as-quenched hardness required prior to tempering to final hardness that will produce the best stress-resisting microstructure; the depth below the surface to which this hardness must extend; and the quenching medium that should be used in hardening.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006469
EISBN: 978-1-62708-190-0
..., ultrasonic energy is reflected and returns to the transducer (pulse-echo). The returning pulse travels along the same path and at the same speed as the transmitted pulse, but in the opposite direction. Upon reaching the transducer through the couplant, the returning pulse causes the transducer piezoelectric...
Abstract
This article considers the two primary methods used for ultrasonic inspection: pulse-echo and the transmission methods. Pulse-echo inspection can be accomplished with longitudinal, shear, surface (Rayleigh), or Lamb (plate) waves using a diverse range of transducers. The article discusses the principles of each of these inspection methods. It describes the applications and the basic data formats for single-element transducer-based systems, including A-scans, B-scans, and C-scans. The article provides information on electronic equipment used for ultrasonic inspection. It also describes how specific material conditions produce and modify A-scan indications. The article provides information on the controls and their functions for the display unit of the electronic equipment. It describes the techniques used for the identification and characterization of flaws, namely, surface (Rayleigh) wave and ultrasonic polar scan techniques.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003242
EISBN: 978-1-62708-199-3
... = rating life in millions of revolutions or hours at a given operating speed and load that 90% of a given lot of bearings will survive, M = mass loss of the specimen, M p = mass of impinging particles, M ref = mass loss of a specified reference material under the same conditions, N = number of...
Abstract
Wear is mechanically-induced surface damage that results in the progressive removal of material. Because different types of wear occur in machinery, many different types of wear tests have been developed to evaluate its effects on materials and surface treatments. This article provides an explanation on mechanisms, forms (sliding, impact, and rolling) and the causes of wear. It describes the wear measuring methods, including the mass loss method, wear width method, and scar depth method. The units used to report wear vary with type of wear and with the purpose for which the data are to be used. Listing the considerations of tribosystem analysis, the article provides information on selection of ASTM wear test methods grouped by wear type. The article concludes by tabulating the testing geometries and parameters that are commonly controlled and reported when conducting wear tests.