1-20 of 277 Search Results for

traverse speed

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 31 October 2011
Fig. 12 Friction stir weld regions at tool traverse speed of (a) 40 mm/min (1.6 in./min), (b) 120 mm/min (4.7 in./min), (c) 150 mm/min (6.0 in./min), and (d) 200 mm/min (8.0 in./min). Processed region corresponding to 200 mm/min shows void. Source: Ref 54 More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
... diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards. absorptivity chemical hazards conduction-mode welding deep-penetration-mode welding electrical hazards eye hazards...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
..., absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding. aluminum alloys laser beam welding porosity laser cutting laser roll welding hybrid laser welding...
Image
Published: 01 January 2006
Fig. 14 Effect of abrasive flow rate and grit number on depth of cut (garnet abrasive; 220 MPa, or 32 ksi water pressure; 0.46 mm, or 0.018 in., waterjet diameter; 152 mm/min, or 6 in./min, traverse speed; cast iron). Source: Department of Industrial and Manufacturing Engineering, University More
Image
Published: 01 January 2006
Fig. 15 Depth of cut results for different materials (60-grit garnet abrasive; 0.91 kg/min, or 2 lb/min, abrasive flow rate; 0.51 mm, or 0.020 in., waterjet diameter; 152 mm/min, or 6 in./min, traverse speed). Source: Department of Industrial and Manufacturing Engineering, University of Rhode More
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002141
EISBN: 978-1-62708-188-7
... of centerless grinding of threads and high-volume applications of thread grinding. cylindrical thread grinding grinding grinding fluids grinding machines grinding speed multirib wheel plunge grinding multirib wheel skip-rib grinding multirib wheel three-rib grinding multirib wheel traverse...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... variables for laser welding include incident laser-beam power, incident laser-beam diameter, traverse speed, absorptivity, shielding gas, depth of focus and focal position, and weld design and gap size. The important dependent variables are depth of penetration, microstructure and mechanical properties...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005107
EISBN: 978-1-62708-186-3
... finish. Courtesy of Department of Industrial and Manufacturing Engineering, University of Rhode Island Garnet versus Silica Tables 1 and 2 list surface finish ranges for garnet and silica abrasives. The following conclusions can be drawn from these data: Traverse cutting speed...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
... rate. Guidelines for Cylindrical Grinding When using wheels larger than 355 mm (14 in.) in diameter—use one grade softer bond. For heavier stock removal—use a faster traverse speed and a slower work speed and/or increase the depth of cut. To improve workpiece finish—use a slower...
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002140
EISBN: 978-1-62708-188-7
.... It describes the classification of thread milling cutters, such as single-form cutters and multiple-form cutters. The article reviews the speeds and feeds for thread milling, which depend on a number of variables, such as the material being milled, tool material, and rigidity of the machine and workpiece...
Image
Published: 01 August 2018
Fig. 26 Rotary probe unit used for the eddy-current inspection of steel billets, and graph showing effect of position on speed as the probe unit traverses radially over one quadrant of a 102 mm (4 in.) square billet More
Image
Published: 01 January 2006
Fig. 11 Bending of kerf in a Plexiglas workpiece subjected to excessively high traverse cutting speeds. The portion at the bottom was pierced before cutting, and this caused a section of the hole to be eroded away as it was subsequently cut by the abrasive waterjet nozzle. Courtesy More
Image
Published: 31 October 2011
Fig. 10 Transverse profiles as a function of focus position for a laser-beam-welded type 310 stainless steel. Negative and positive numbers indicate position of the focal point below and above, respectively, the surface of the plate. Beam power, 5 kW; traverse welding speed, 16 mm/s (38 More
Image
Published: 01 January 1993
Fig. 3 Transverse profiles as a function of focus position for a laser-beam welded type 310 stainless steel. Negative and positive numbers indicate position of focal point below and above, respectively, surface of plate. Beam power, 5 kW. Traverse welding speed, 16 mm/s (38 in./min). Source More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
... examples of these are shown in Fig. 8 . These defects are either flow related or geometric. Also shown in Fig. 8 is a processing map correlating the tool rotational rate and tool traverse speed and the impact of these parameters on the generation and control of these defects. In flow-related defects...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001383
EISBN: 978-1-62708-173-3
... reproducibility, and is not dependent on operator skill. The width and thickness of the deposited layer is influenced by the primary surfacing variables of rotational speed, axial force, substrate traverse rate, consumable diameter, and type of material. Generally, the fully bonded width of the deposit...
Book Chapter

By K. Subramanian
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002152
EISBN: 978-1-62708-188-7
..., or a taper on the wheel face. Excessive wear is generally associated with poor tool selection, large truing forces, very small traverse speed, high infeed rates, abusive conditions of wheel truing, or excessive wheel runout that could have been reduced during mounting of the wheel. Ensuring Consistent...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002158
EISBN: 978-1-62708-188-7
.... The article reviews several variables that influence the WJM process, such as pressure, flow and nozzle diameter, stand-off distance, traverse rate, and type and size of abrasive. Advantages and disadvantages of waterjet and abrasive waterjet cutting are also discussed. The article describes the applications...
Book Chapter

Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005560
EISBN: 978-1-62708-174-0
... by the primary surfacing variables of rotational speed, axial force, substrate traverse rate, consumable diameter, and type of material. Generally, the fully bonded width of the deposit is approximately 1 to 3 mm (0.04 to 0.12 in.) less than the diameter of the consumable, with the extreme angles of the deposit...