Skip Nav Destination
Close Modal
Search Results for
transverse impact toughness
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 427 Search Results for
transverse impact toughness
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006730
EISBN: 978-1-62708-210-5
... mechanical properties physical properties transverse impact toughness Alloy 7039 ( Table 1 ) contains about 4% Zn and 2.8% Mg with small additions of Cr and Mn. Its high tensile strength provides high resistance to penetration by projectiles, and it’s primary application is armor plate, although other...
Image
Published: 01 December 1998
Fig. 49 Effect of sulfide inclusions on toughness of ferritic steels. (a) Relationship between projected inclusion length per unit area and crack tip opening displacement to fracture in sulfur-bearing steels. (b) Effect of rare earth additions on impact properties of aluminum-silicon killed X
More
Image
Published: 01 January 1996
Fig. 17 Effect of sulfide shape control on transverse toughness of structural steels. (a) Typical transition behavior of HSLA steel without inclusion shape control. Data determined on half-size Charpy V-notch test specimens. (b) Effect of cerium-to-sulfur ratio on upper-shelf impact energy
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001027
EISBN: 978-1-62708-161-0
... to lot; greater ductility and toughness, especially in the transverse direction; and greater in-service reliability. Medium-carbon low-alloy ultrahigh-strength steels are readily hot forged, usually at temperatures ranging from 1065 to 1230 °C (1950 to 2250 °F). Specific forging temperatures...
Abstract
Structural steels with very high strength levels are often referred to as ultrahigh-strength steels. This article describes the commercial structural steels capable of a minimum yield strength of 1380 MPa (200 ksi). The ultrahigh-strength class of constructional steels includes several distinctly different families of steels. The article focuses on medium-carbon low-alloy steels, medium-alloy air-hardening steels, and high fracture toughness steels. The medium-carbon low-alloy family of ultrahigh-strength steels includes AISI/SAE 4130, the higher-strength 4140, and the deeper hardening, higher-strength 4340. Also from this family are descriptions for the 300M, D-6a and D-6ac, 6150, and 8640 steels. The medium-alloy air-hardening family of ultrahigh-strength steels includes H11 modified and H13 steels. The high fracture toughness family of ultrahigh-strength steels includes HP-9-4-30 steel and AF1410 steel. The article explains the mechanical properties and the heat treatments of the medium-carbon low-alloy steels, medium-alloy air-hardening steels, and high fracture toughness steels.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
.... A number of notch impact tests have been developed to screen and rate steel product toughness on a relative basis and to determine the ductile-to-brittle transition for a specific carbon or HSLA steel product. Examples of various notch toughness tests are: Test ASTM specification Charpy V-notch...
Abstract
Notch toughness is an indication of the capacity of a steel to absorb energy when a stress concentrator or notch is present. The notch toughness of a steel product is the result of a number of interactive effects, including composition, deoxidation and steelmaking practices, solidification, and rolling practices, as well as the resulting microstructure. All carbon and high-strength low-alloy (HSLA) steels undergo a ductile-to-brittle transition as the temperature is lowered. The composition of a steel, as well as its microstructure and processing history, significantly affects both the ductile-to-brittle transition temperature range and the energy absorbed during fracture at any particular temperature.. Th article focuses on various aspects of notch toughness including the effects of composition and microstructure, general influence of manufacturing practices and the interactive effects that simultaneously influence notch toughness. With the exception of working direction, most of the same chemical, microstructural, and manufacturing factors that influence the notch toughness of wrought steels also apply to cast steels. The Charpy V-notch test is used worldwide to indicate the ductile-to-brittle transition of a steel. While Charpy results cannot be directly applied to structural design requirements, a number of correlations have been made between Charpy results and fracture toughness.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003325
EISBN: 978-1-62708-176-4
... Abstract This article discusses the standard test methods that can be applied to many types of welds: tension, bending, impact, and toughness testing. It provides information on four qualification stages, namely, the weld material qualification, base material qualification, the weld procedure...
Abstract
This article discusses the standard test methods that can be applied to many types of welds: tension, bending, impact, and toughness testing. It provides information on four qualification stages, namely, the weld material qualification, base material qualification, the weld procedure qualification, and the weld service assessment. The article describes two general types of measurements for residual stress in welds: locally destructive techniques and nondestructive techniques. Locally destructive techniques include hole drilling, chip machining, and block sectioning. Nondestructive techniques include X-ray diffraction, neutron diffraction, Barkhausen noise analysis, and ultrasonic propagation analysis. The article concludes with an overview of weldability testing.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006064
EISBN: 978-1-62708-175-7
... applications. The most important mechanical properties of WC-Co include hardness, high-temperature deformation resistance, corrosion resistance, wear resistance, transverse rupture strength (TRS), impact resistance, and fracture toughness. General ranges of some of these properties are presented in Table 2...
Abstract
Cemented carbide is, in its simplest form, a metal-matrix composite of tungsten carbide particles in a cobalt matrix. This article describes the microstructure, physical, and mechanical properties of cemented carbides. The properties discussed include thermal conductivity, magnetic properties, corrosion resistance, hardness, fracture toughness, wear resistance, and thermal shock resistance. The article concludes with information on the applications, grade classification, and selection of grades.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001343
EISBN: 978-1-62708-173-3
... are tension tests (transverse and all-weld-metal), Charpy impact tests, fracture toughness tests, and a microhardness traverse. A transverse tensile test is primarily used to ensure that the welded joint is not the weak link in the final structure. In this case, a 305 × 32 mm (12.0 × 1.25 in.) specimen...
Abstract
This article describes the characterization of welds as a sequence of procedures, where each procedure is concerned with a finer scale of detail. The first level of characterization involves information that may be obtained by direct visual inspection and measurement of the weld. The article discusses nondestructive evaluation of welds by encompassing techniques that are used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. It reviews the macrostructural characterization of a sectioned weld, including features such as number of passes; weld bead size, shape, and homogeneity; and the orientation of beads in a multipass weld. The article provides examples that describe how welds are characterized according to the procedures.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001037
EISBN: 978-1-62708-161-0
... ), underwater joints should meet notch toughness requirements as established by either the Naval Research Laboratory drop-weight test (ASTM E 208) or the CVN impact energy test. For the drop-weight test, the joints should be rated for no-break performance. The CVN test is performed on transverse test specimens...
Abstract
Critical structural components must be fabricated from steels that exhibit adequate low-temperature fracture toughness because of the serious consequences of failure due to brittle fracture. This article reviews fracture resistance assessment procedures for welded joints and includes discussions on fatigue crack growth and fracture toughness. It presents the fracture toughness requirements specified by different design codes, summarizes the specifications for offshore structural steels provided by international standards organizations, and discusses the applications of these specifications. The article also focuses on advances made in steel technology and the impact of these advances on the fracture toughness of steel.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002399
EISBN: 978-1-62708-193-1
... loading rates change from slow bending to impact. Therefore, valid comparison can only be made when loading rate, specimen size, and notch acuity are similar. These different types of fracture toughness tests are discussed elsewhere in this Volume (see the article “Fracture Toughness Testing...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... be specified to define a specific grade. For straight WCs of comparable WC grain size, increasing cobalt content increases transverse strength and toughness but decreases hardness, compressive strength, elastic modulus, and abrasion resistance. If, for example, medium-grain carbides having 3, 7, and 25% Co...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses the manufacture, composition, classifications, and physical and mechanical properties of cemented carbides. It describes the application of hard coatings to cemented carbides by physical or chemical vapor deposition (PVD or CVD). Tungsten carbide-cobalt alloys, submicron tungsten carbide-cobalt alloys, and alloys containing tungsten carbide, titanium carbide, and cobalt are used for machining applications. The article also provides an overview of cermets used in machining applications.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001025
EISBN: 978-1-62708-161-0
... 18 ASTM A 612 Plate Same as ASTM A 612 in the as-rolled condition, but can be normalized for improved impact toughness ASTM A 633, grade A Plate 100 4 0.18 1.00–1.35 0.15–0.50 … 290 42 430–570 63–83 18 ASTM A 662, grade A Plate 40–50 1 1 2 –2 0.14 0.90–1.35 0.15...
Abstract
This article considers four types of high-strength structural steels: heat-treated low-alloy steels, as-rolled carbon-manganese steels, heat-treated (normalized or quenched and tempered) carbon steels, and as-rolled high-strength low-alloy (HSLA) steels (which are also known as microalloyed steels). The article places emphasis on HSLA steels, which are an attractive alternative in structural applications because of their competitive price per-yield strength ratios. HSLA steels are primarily hot-rolled into the usual wrought product forms and are furnished in the as-hot-rolled condition. In addition to hot-rolled products, HSLA steels are also furnished as cold-rolled sheet and forgings. This article describes the different categories of HSLA steels and provides a summary of characteristics and intended uses of HSLA steels described in the American Society for Testing and Materials (ASTM) specifications. The article also presents some applications of HSLA steels.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006344
EISBN: 978-1-62708-179-5
..., the hardness of such iron is 48 to 50 HRC. Transverse breaking loads of gray irons tested in accordance with ASTM A438 Table 4 Transverse breaking loads of gray irons tested in accordance with ASTM A438 ASTM class (a) Approximate tensile strength Corrected transverse breaking load...
Abstract
A wide range of mechanical properties can be obtained with a given composition of cast iron, depending on the microstructural constituents that form during solidification and subsequent solid-state processing. This article discusses the mechanical properties of gray iron and provides some general property comparisons with malleable, ductile (nodular), and compacted graphite irons. The mechanical properties of gray iron are determined by the combined effects of its chemical composition, processing technique in the foundry, and cooling rates during solidification. The article provides information on the classification of gray irons based on ASTM International specification A48/A48M. It discusses the loading effect, surface effect, notch sensitivity, and environmental effect on the mechanical properties of gray iron. The chemical composition ranges of some of the more widely used heat-resistant gray irons suitable for elevated-temperature service are presented in a table.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001042
EISBN: 978-1-62708-161-0
... better toughness is obtained in the hardness range of 46 to 55 HRC using austenitizing temperatures ranging from 1038 to 1121 °C (1900 to 2050 °F). The impact toughness and wear resistance values of CPM 9V, compared to those of a number of conventional and P/M hot- and cold-work tool steels, are shown...
Abstract
The powder metallurgy (P/M) process has been used primarily for the production of advanced high-speed tool steels. However, the P/M process is also being applied to the manufacture of improved cold-work and hot-work tool steels. The basic heat treatments for P/M high-speed tool steels include preheating, austenitizing, quenching, and tempering. This article describes manufacturing properties, cutting tool properties, and applications of P/M high-speed tool steels. It discusses the development of P/M high-speed alloy steels that cannot be made by conventional methods because of their high carbon, nitrogen, or alloy contents. For high-speed tool steels, a number of important end-user properties have been improved by powder processing; machinability, grindability, dimensional control during heat treatment, and cutting performance under difficult conditions where high edge toughness is essential. Several of these advantages also apply to P/M cold- and hot-work tool steels, which, compared to conventional tool steels, offer better toughness and ductility for cold-work tooling, better thermal fatigue life, and greater toughness for hot-work tooling.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... strength and tensile strength. The article reviews low velocity impacts in aircraft structures in terms of resin toughness, laminate thickness, specimen size and impactor mass, and post-impact fatigue. It explains the tension strength analysis, such as linear elastic fracture mechanics and R-curve methods...
Abstract
This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive strength and tensile strength. The article reviews low velocity impacts in aircraft structures in terms of resin toughness, laminate thickness, specimen size and impactor mass, and post-impact fatigue. It explains the tension strength analysis, such as linear elastic fracture mechanics and R-curve methods, to predict the residual strength of the structures.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003305
EISBN: 978-1-62708-176-4
... initiation, crack growth, and fracture on the final cycle. charpy V-notch impact energy absorption crack growth crack initiation ductile-to-brittle fracture transition elastic-plastic fracture mechanics fatigue fracture mechanics fracture toughness linear-elastic fracture mechanics notched...
Abstract
The fracture-mechanics technology has significantly improved the ability to design safe and reliable structures and identify and quantify the primary parameters that affect structural integrity of materials. This article provides a discussion on fracture toughness of notched materials by explaining the ductile-to-brittle fracture transition and by correlating KId, KIc, and Charpy V-notch impact energy absorptions. It highlights the effects of constraint, temperature, and loading rate on the fracture transition. The article discusses the applications of fracture mechanism in limiting of operating stresses. It describes the mechanisms, testing methods, and effecting parameters of two main categories of fracture mechanics: linear-elastic fracture mechanics and elastic-plastic fracture mechanics. The article concludes with a discussion on the three major progressive stages of fatigue: crack initiation, crack growth, and fracture on the final cycle.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006418
EISBN: 978-1-62708-192-4
... and subsequent liquid-phase sintering operations. Nickel (Ni) Nickel (Ni) is used as a binder in less than 10% of total carbide production because of poor WC wettability, which results in decreased hardness and toughness relative to cobalt grades at identical binder levels. Tungsten carbide-nickel grades...
Abstract
Cemented carbides, best known for their superior wear resistance, have a range of industrial uses more diverse than that of any other powder metallurgy product including metalworking and mining tools and wear-resistant components. This article discusses raw materials and manufacturing methods used in the production of cemented carbides, the physical and mechanical properties of carbides, and wear mechanisms encountered in service. Emphasis is placed on tungsten carbide-cobalt (WC-Co) or tungsten carbide-nickel (WC-Ni) materials as used in nonmachining applications. Nominal composition and properties of representative cemented carbide grades and their applications are listed in a table.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006718
EISBN: 978-1-62708-210-5
... bal Source: Ref 1 Applications include pressure cylinders, bicycle frames, seamless tubing, hot and cold impact extrusions, forged truck wheels, drive-shaft yokes, steering columns, shock-absorber housings, air-bag canisters, and other applications where strength requirements are 20 to 30...
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002398
EISBN: 978-1-62708-193-1
.... These include the Charpy V-notch impact test, the drop-weight test, the dynamic tear test, and specialized procedures to determine plane-strain fracture toughness. Higher toughness is obtained when a steel is quenched and tempered, rather than normalized and tempered; quenching, followed by tempering, produces...
Abstract
This article summarizes the general fatigue and fracture properties of cast steels, namely, toughness, fatigue, and component design factors such as section size and discontinuities. It describes the various factors that influence fatigue of cast steels. These factors include section size, defect size, stress modes, and waveform types. The article discusses various fracture mechanics in cast steels: cyclic stress-strain behavior and low- and high-cycle fatigue life behavior; plane-stress fracture toughness; plane-strain fracture toughness; constant-amplitude fatigue crack initiation and growth; and variable-amplitude fatigue crack initiation and growth.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
1