1-20 of 390 Search Results for

transverse impact toughness

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006730
EISBN: 978-1-62708-210-5
... distance and d is the pin diameter. Source: Ref 1 Transverse impact toughness of aluminum alloy 7039-T64 plate Table 4 Transverse impact toughness of aluminum alloy 7039-T64 plate Plate thickness Test temperature Elongation in 50 mm (2 in.), % Unnotched impact toughness, Notched...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001027
EISBN: 978-1-62708-161-0
... Notch toughness, fracture toughness, and K Iscc for 4340 steel tempered to different hardnesses Hardness, HB Equivalent tensile strength (a) Charpy V-notch impact energy Plane-strain fracture toughness ( K Ic ) K Iscc in seawater MPa ksi J ft · lbf MPa m ksi...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003325
EISBN: 978-1-62708-176-4
...Abstract Abstract This article discusses the standard test methods that can be applied to many types of welds: tension, bending, impact, and toughness testing. It provides information on four qualification stages, namely, the weld material qualification, base material qualification, the weld...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001343
EISBN: 978-1-62708-173-3
... are tension tests (transverse and all-weld-metal), Charpy impact tests, fracture toughness tests, and a microhardness traverse. A transverse tensile test is primarily used to ensure that the welded joint is not the weak link in the final structure. In this case, a 305 × 32 mm (12.0 × 1.25 in.) specimen...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006064
EISBN: 978-1-62708-175-7
... applications. The most important mechanical properties of WC-Co include hardness, high-temperature deformation resistance, corrosion resistance, wear resistance, transverse rupture strength (TRS), impact resistance, and fracture toughness. General ranges of some of these properties are presented in Table 2...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002399
EISBN: 978-1-62708-193-1
... loading rates change from slow bending to impact. Therefore, valid comparison can only be made when loading rate, specimen size, and notch acuity are similar. These different types of fracture toughness tests are discussed elsewhere in this Volume (see the article “Fracture Toughness Testing...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006344
EISBN: 978-1-62708-179-5
... cannot be assumed to represent accurately the properties of the metal in every section of every casting, because of differences in section size and cooling rate. Tension and transverse tests on cast bars are the most common for evaluating the strength of gray iron. ASTM International specification...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
.... A number of notch impact tests have been developed to screen and rate steel product toughness on a relative basis and to determine the ductile-to-brittle transition for a specific carbon or HSLA steel product. Examples of various notch toughness tests are: Test ASTM specification Charpy V-notch...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001025
EISBN: 978-1-62708-161-0
... 1 2 0.24 1.00–1.60 0.15–0.50 0.35 345 50 485–620 70–90 18 Plate 65–100 2 1 2  –4 0.24 1.0–1.60 0.15–0.50 0.35 310 45 450–585 65–85 18 ASTM A 612 Plate Same as ASTM A 612 in the as-rolled condition, but can be normalized for improved impact toughness ASTM...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001037
EISBN: 978-1-62708-161-0
... joints should meet notch toughness requirements as established by either the Naval Research Laboratory drop-weight test (ASTM E 208) or the CVN impact energy test. For the drop-weight test, the joints should be rated for no-break performance. The CVN test is performed on transverse test specimens...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... be specified to define a specific grade. For straight WCs of comparable WC grain size, increasing cobalt content increases transverse strength and toughness but decreases hardness, compressive strength, elastic modulus, and abrasion resistance. If, for example, medium-grain carbides having 3, 7, and 25% Co...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006418
EISBN: 978-1-62708-192-4
... and subsequent liquid-phase sintering operations. Nickel (Ni) Nickel (Ni) is used as a binder in less than 10% of total carbide production because of poor WC wettability, which results in decreased hardness and toughness relative to cobalt grades at identical binder levels. Tungsten carbide-nickel grades...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001042
EISBN: 978-1-62708-161-0
... 1 ). CPM 9V is capable of being heat treated to 58 to 60 HRC using austenitizing temperatures at or above 1149 °C (2100 °F). However, much better toughness is obtained in the hardness range of 46 to 55 HRC using austenitizing temperatures ranging from 1038 to 1121 °C (1900 to 2050 °F). The impact...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003038
EISBN: 978-1-62708-200-6
... and modulus of 2750 MPa (400 ksi) and up to 130 GPa (19 × 10 6 psi), respectively, with elongations of up to 4%. This results in very tough composites that exhibit good flexural and impact strengths, which are well suited to ballistic applications and whenever energy absorption is necessary. The low specific...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
... results. It provides information on the specimen preparation, instrumentation, and procedures for various mechanical test methods of fiber-reinforced composites. These include the compression test, flexure test, shear test, open hole tension test, and compression after impact test. The article describes...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001104
EISBN: 978-1-62708-162-7
.... 25 Comparison of the transverse rupture strength of uncoated and coated carbide tools. Measured by a three-point bend test on 5 × 5 × 19 mm (0.2 × 0.2 × 0.75 in.) specimens of 73WC-19(Ti,Ta,Nb) C-8Co Fig. 15 Variation in fracture toughness ( K Ic ) with temperature for a number of WC-Co...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... in compressive strength and tensile strength. The article reviews low velocity impacts in aircraft structures in terms of resin toughness, laminate thickness, specimen size and impactor mass, and post-impact fatigue. It explains the tension strength analysis, such as linear elastic fracture mechanics and R-curve...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001021
EISBN: 978-1-62708-161-0
... 1305 189 25 1 12.0 36.7 1CE Closed end Transverse 1275 185 1310 190 25 1 11.0 19.0 5CE Closed end Transverse 1220 177 1305 189 25 1 12.5 34.7 Code Location Orientation Izod impact energy Bend angle, degree J ft · lbf EB Open end...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006308
EISBN: 978-1-62708-179-5
...) gray iron, such as austenitic nickel-alloyed, or ferritic silicon-alloyed also are used, but in relatively small tonnage, and are not discussed in this article. Gray irons are commonly classified by their minimum tensile strength. Selection also is influenced by other properties such as transverse...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... relationship in applications that require both wear resistance and impact resistance. A correlation of wear resistance and toughness for a variety of ferrous alloys is shown in Fig. 5 . The scatter arises, at least in part, from microstructural effects. For example, point 22B ( Fig. 5 ) refers to AISI...