Skip Nav Destination
Close Modal
Search Results for
transmitted-light microscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 160 Search Results for
transmitted-light microscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009076
EISBN: 978-1-62708-177-1
... Abstract This article describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted light microscopy. It provides information on the contrast-enhancement methods used by transmitted...
Abstract
This article describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted light microscopy. It provides information on the contrast-enhancement methods used by transmitted-light microscopy and optimization of microscope conditions. Examples of composite ultrathin sections analyzed using transmitted-light microscopy contrast methods are also presented.
Image
in Matrix Microstructure Analysis of Fiber-Reinforced Composites[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 8 Transmitted-light microscopy of the natural fiber composite ultrathin section. Phase contrast, 40× objective
More
Image
in Matrix Microstructure Analysis of Fiber-Reinforced Composites[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 9 Transmitted-light microscopy of the natural fiber composite ultrathin section. Hoffman modulation contrast, 40× objective
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003464
EISBN: 978-1-62708-195-5
...-fluorescence. The article also provides information on transmitted light microscopy. composite materials epi-bright-field illumination epi-dark-field illumination epi-fluorescence epi-polarized light failure analysis illumination methods mounting polishing quality control reflected light...
Abstract
Microscopy is a valuable tool in materials investigations related to problem solving, failure analysis, advanced materials development, and quality control. This article describes the sample preparation techniques of composite materials. These techniques include mounting, rough grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi-fluorescence. The article also provides information on transmitted light microscopy.
Image
in Sample Preparation and Mounting for Fiber-Reinforced Composites[1]
> Metallography and Microstructures
Published: 01 December 2004
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009082
EISBN: 978-1-62708-177-1
... differential scanning calorimetry, x-ray analysis, or density measurements, these analytical methods provide little, if any, information on the origin and microstructure of the crystallinity in the composite. To determine the morphology of thermoplastic-matrix composites, transmitted polarized-light microscopy...
Abstract
Microstructural analysis of the composite matrix is necessary to understand the performance of the part and its long-term durability. This article focuses on the microstructural analysis of engineering thermoplastic-matrix composites and the influence of cooling rate and nucleation on the formation of spherulites in high-temperature thermoplastic-matrix carbon-fiber-reinforced composites. It also describes the microstructural analysis of a bio-based thermosetting-matrix natural fiber composite system.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009094
EISBN: 978-1-62708-177-1
..., “Special Sample Preparation and Polishing,” D. Jean Ray for her contributions to the article, “Thin-Section Preparation and Transmitted Light Microscopy,” and Anthony Falcone for his contributions to the article “The Effects of Lightning Strikes on Polymeric Composites.” ...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009075
EISBN: 978-1-62708-177-1
... differences arise from relief on the specimen surfaces. Fluorescence Microscopy Epi-fluorescence microscopy uses an ultraviolet light source (mercury or xenon) for illumination. The light is transmitted though an excitation filter that blocks all but a narrow bandwidth of the light spectrum. The narrow...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This article is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The article opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009080
EISBN: 978-1-62708-177-1
... of the thermosetting resin. As a result, the phase separation of the rubber may be incomplete, which can lead to ambient- and elevated-temperature property degradation. In the following figures, ultrathin sections were developed from the composite materials to use transmitted-light optical microscopy contrast...
Abstract
This article describes the dispersed-phase toughening of thermoset matrices by the development of multiphase-structure thermosetting matrices using rubber and/or thermoplastic materials. It discusses two main methods for manufacturing prepregs, namely, single-pass impregnation and double-pass impregnation. The article illustrates reflected-light optical microscopy techniques to evaluate the morphology of thermoplastic materials for determining the material quality and correlating key microstructural features with material performance.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009083
EISBN: 978-1-62708-177-1
... this analysis, an ultrathin section (0.5 to 5 μm) must be developed from the honeycomb sandwich structure composite part to be able to use all of the contrast techniques of transmitted-light microscopy. Figure 1 shows an area of a honeycomb-cored sandwich structure composite cross section that is viewed...
Abstract
Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This article illustrates an area of a honeycomb-cored sandwich structure composite cross section that is viewed using transmitted polarized light. This area shows the differences in the constituents and resin intermingling. The article discusses the factors that govern the honeycomb core movement and honeycomb core crush, with illustrations. Some common tests performed on honeycomb composites to characterize the skin-to-core bond strength are the climbing drum peel and flatwise tensile tests. The article concludes with a description on the reasons for core failure, which are analyzed after these tests.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009081
EISBN: 978-1-62708-177-1
..., including matrix strains and fracture morphology, can be determined with the development of ultrathin sections and transmitted polarized light or one of many other contrast methods. Through the use of these techniques, a complete analysis of the damage response of fiber-reinforced composite materials...
Abstract
This article describes methods for analyzing impact-damaged composites in the aircraft industry. These include C-scan and x-radiography methods and optical microscopy. The article reviews brittle-matrix composite and tough-matrix composite failures. It explains the different types of composite failure mechanisms such as thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, dispersed-phase and rubber-toughened thermoset-matrix composite failure mechanisms, and particle interlayer-toughened composite failure mechanisms.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003753
EISBN: 978-1-62708-177-1
... transmitted light microscopy can be more effectively used in the microstructural imaging of polymers (where specimens may allow more light transmission). The choice of method also depends on imaging requirements such as resolution, magnification, depth of field, and lens aberration. These factors may...
Abstract
This article introduces the concepts of electron and light microscopy with some general features of imaging systems and the ideas of magnification, resolution, depth of field, depth of focus, and lens aberrations as they apply to simple and familiar light-optical systems. In addition, it describes the differences between electron and light in the context of their respective microscopy techniques.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
... in.) macrophotograph Fig. 16 Ultrathin section showing the microstructure of spruce wood. Transmitted-light phase contrast, 40× objective Optical Microscopy of Composite Materials Optical microscopy is a valuable tool in materials investigations related to problem solving, failure analysis...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
... light and dark contrast in the image. Grains that transmitted a high percentage of the incident beam appear bright, and those that diffracted more of the incident beam appear dark. Figure 17 shows an example of this type of grain contrast. Fig. 17 Transmission electron microscopy grain...
Abstract
Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies, namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis detection threshold and precision, limitations, sample requirements, and the capabilities of related techniques.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009072
EISBN: 978-1-62708-177-1
... Preparation and Transmitted-Light Microscopy” ), this mold geometry is necessary. Summary of Mounting Procedure The following steps are recommended to achieve a good mounted specimen without voids or specimen pull-out: Select a mold to hold the specimens, and coat with a mold release agent...
Abstract
This article describes how composite specimens are sectioned, documented, and labeled during sample preparation. The mounting procedures for the specimen are summarized. The article explains sample clamping, which involves not mounting the specimens using an adhesive or casting resin and corresponds to clamped samples used in automated polishing heads. It details that cavity molds involve mounting the composite specimens using a casting resin in a preset mold. The article also discusses the mounting of composite materials for hand polishing.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
... microscopy for the analysis of materials and device components generally refers to reflected light microscopy. In this method, light is reflected from the sample surface through the microscope objective to an eyepiece, view screen, or camera. Transmitted light is occasionally used for transparent...
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003754
EISBN: 978-1-62708-177-1
..., to obtain additional information, are also described. The article concludes with information on photomicroscopy and macrophotography. bright-field illumination dark-field illumination depth of field interference-contrast illumination light microscopy macrophotography mechanical components...
Abstract
This article provides information on the basic components of a light microscope, including the illumination system, collector lens, and optical and mechanical components. It describes optical performance in terms of image aberrations, resolution, and depth of field. The article discusses the examination of specimen surfaces using polarized light, phase contrast, oblique illumination, dark-field illumination, bright-field illumination, interference-contrast illumination, and phase contrast illumination. Special techniques and devices that may be used with the optical microscope, to obtain additional information, are also described. The article concludes with information on photomicroscopy and macrophotography.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009085
EISBN: 978-1-62708-177-1
.... Further preparation of the reflected-light sample to an ultrathin-section sample revealed more information about the heat generation created by the lightning strike. The vaporized and degraded matrix in the first ply can easily be seen by using transmitted-light optical microscopy. Deeper under the damage...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003788
EISBN: 978-1-62708-177-1
..., their characteristics and sample preparation procedures. It reviews the methods pertaining to the microstructural examination of bulk magnetic materials, including microscopy techniques specified to magnetic materials characterization, with specific examples. The techniques used in the study of magnetic domain...
Abstract
Microstructural analysis of specialized types of magnetic materials is centered on the examination of optical, electron, and scanning probe metallographic techniques unique to magnetic materials. This article provides a comprehensive overview of magnetic materials, their characteristics and sample preparation procedures. It reviews the methods pertaining to the microstructural examination of bulk magnetic materials, including microscopy techniques specified to magnetic materials characterization, with specific examples. The techniques used in the study of magnetic domain structures (microstructure) include the magneto-optical Kerr method, the Faraday method, the Bitter technique, scanning electron microscopy (magnetic contrast Types I and II), scanning electron microscopy with polarization analysis, Lorentz transmission electron microscopy, and magnetic force microscopy. The article also illustrates the microstructure of different types of soft magnetic material and permanent magnets.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006681
EISBN: 978-1-62708-213-6
..., and spectrometry techniques with data analysis. electron diffraction transmission electron microscopy crystal structure Overview Introduction Microstructure observation is an essential approach for materials characterization, which is primarily performed by using light optical microscopy...
Abstract
Transmission electron microscopy (TEM) approach enables essentially simultaneous examination of microstructural features through imaging from lower magnifications to atomic resolution and the acquisition of chemical and crystallographic information from small regions of the thin specimen. This article discusses fundamentals of the technique, especially for solving materials problems. Background information is provided to help understand basic operations and principles, including instrumentation, the physics of signal generation and detection, image formation, electron diffraction, and spectrometry techniques with data analysis.
1