Skip Nav Destination
Close Modal
Search Results for
transition metal-metal binary alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 294 Search Results for
transition metal-metal binary alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003836
EISBN: 978-1-62708-183-2
... the general corrosion behavior and localized corrosion behavior of transition metal-metal binary alloys, transition metal-metalloid alloys, and amorphous simple metal-transition metal-rare earth metal alloys. It concludes with a discussion on the environmentally induced fracture of glassy alloys, including...
Abstract
This article illustrates the three techniques for producing glassy metals, namely, liquid phase quenching, atomic or molecular deposition, and external action technique. Devitrification of an amorphous alloy can proceed by several routes, including primary crystallization, eutectoid crystallization, and polymorphous crystallization. The article demonstrates a free-energy versus composition diagram that summarizes many of the devitrification routes. It provides a historical review of the corrosion behavior of fully amorphous and partially devitrified metallic glasses. The article describes the general corrosion behavior and localized corrosion behavior of transition metal-metal binary alloys, transition metal-metalloid alloys, and amorphous simple metal-transition metal-rare earth metal alloys. It concludes with a discussion on the environmentally induced fracture of glassy alloys, including hydrogen embrittlement and stress-corrosion cracking.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005211
EISBN: 978-1-62708-187-0
... in eutectic microstructures of most alloy systems is also discussed. binary eutectic phase diagram eutectic structures eutectic microstructures solidification METALLIC EUTECTIC SYSTEMS have been used for several centuries to cast engineering components. The use of eutectic systems predates...
Abstract
This article presents the binary eutectic phase diagram to understand the various structures that evolve in a binary eutectic system during solidification. It describes the various classifications and solidification principles of the eutectic structures. The formation of halos in eutectic microstructures of most alloy systems is also discussed.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006375
EISBN: 978-1-62708-192-4
.... 1 ) in low-pressure and vacuum environments ( Table 1 ). Relatively soft and ductile, high-purity elemental metals ( Table 2 ), high-purity iron-base binary alloys ( Table 3 ), and single-crystal silicon carbide (SiC) are used for pin specimens. Hard ceramics, including single-crystal SiC, sapphire...
Abstract
This article discusses the adhesion behavior of materials in low-pressure and vacuum environments and provides a schematic illustration of an apparatus for measuring adhesion and friction in ultrahigh vacuum. It describes the effects of low-oxygen pressures and vacuum environments on adhesion and friction, as well as the effects of defined exposure to oxygen on friction. The article discusses the wear of various metals in contact with ceramics, and alloying element effects on friction, wear, and transfer of materials. It also describes studies that characterize the contributions of surface contamination and chemical changes to tribology in low-pressure and vacuum environments.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006221
EISBN: 978-1-62708-163-4
... on Melting/Solidification Binary systems have two elements of varying concentration. Unlike pure metals, alloys do not necessarily have a unique melting point. Instead, most alloys have a melting range . This behavior can be seen in the phase diagram for copper-nickel ( Fig. 4 ). The solidus line...
Abstract
The application of phase diagrams is instrumental in solid-state transformations for the processing and heat treatment of alloys. A unary phase diagram plots the phase changes of one element as a function of temperature and pressure. This article discusses the unary system that can exist as a solid, liquid, and/or gas, depending on the specific combination of temperature and pressure. It describes the accomplishment of conversion between weight percentage and atomic percentage in a binary system by the use of formulas. The article analyzes the effects of alloying on melting/solidification and on solid-state transformations. It explains the construction of phase diagrams by the Gibbs phase rule and the Lever rule. The article also reviews the various types of alloy systems that involve solid-state transformations. It concludes with information on the sources of phase diagram.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001095
EISBN: 978-1-62708-162-7
... . In binary alloys where the liquidus and solidus curves fall to relatively low temperatures compared with the melting points of the elemental constituents, the ratio T g / T m (here T m is interpreted as the liquidus/solidus temperature) is larger than in pure metals. Deep-eutectic features in phase...
Abstract
Metallic glasses can be prepared by solidification of liquid alloys at cooling rates sufficient to suppress the nucleation and growth of competing crystalline phases. This article presents a historical survey of the study of metallic glasses and other amorphous metals and alloys. This includes a discussion of synthesis and processing methods, structure and morphology, and a description of the electronic, magnetic, thermodynamic, chemical, and mechanical properties of metallic glasses. In addition, the article describes the development of metallic glasses as materials for technical applications.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006224
EISBN: 978-1-62708-163-4
... compositions of the phases present, and the amounts of phases present. Phase diagrams provide useful information for understanding alloy solidification. The article provides two simple models that can describe the limiting cases of solidification behavior. alloy solidification binary isomorphous systems...
Abstract
The term isomorphous refers to metals that are completely miscible in each other in both the liquid and solid states. This article discusses the construction of simple phase diagrams by using the appropriate points obtained from time-temperature cooling curves. It describes the two methods to determine a phase diagram with equilibrated alloys: the static method and the dynamic method. The article illustrates the construction of phase boundaries according to the Gibbs' phase rule and describes the calculation methods that allow the prediction of the phases present, the chemical compositions of the phases present, and the amounts of phases present. Phase diagrams provide useful information for understanding alloy solidification. The article provides two simple models that can describe the limiting cases of solidification behavior.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003085
EISBN: 978-1-62708-199-3
... in commercial applications, thus improving product predictability. This article describes different equilibrium phase diagrams (unary, binary, and ternary) and microstructures, description terms, and general principles of reading alloy phase diagrams. Further, the article discusses plotting schemes; areas...
Abstract
Alloy phase diagrams are useful for the development, fabrication, design and control of heat treatment procedures that will produce the required mechanical, physical, and chemical properties of new alloys. They are also useful in solving problems that arise in their performance in commercial applications, thus improving product predictability. This article describes different equilibrium phase diagrams (unary, binary, and ternary) and microstructures, description terms, and general principles of reading alloy phase diagrams. Further, the article discusses plotting schemes; areas in a phase diagram; and the position and shapes of the points, lines, surfaces, and intersections, which are controlled by thermodynamic principles and properties of all phases that comprise the system. It also illustrates the application of the stated principles with suitable phase diagrams.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003735
EISBN: 978-1-62708-177-1
... involved in massive transformations and illustrates the resulting phases and structures in ferrous and nonferrous metals and alloys. ferrous metals massive transformation structure nonferrous metals nucleation single-crystal growth MASSIVE TRANSFORMATIONS involve a transition in crystal...
Abstract
Massive transformations are thermally activated phenomena and exhibit nucleation and growth characteristics primarily controlled by the interface between parent and product phases that is generally considered incoherent. This article focuses on the nucleation and growth kinetics involved in massive transformations and illustrates the resulting phases and structures in ferrous and nonferrous metals and alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005210
EISBN: 978-1-62708-187-0
... cubic metals. For alloy castings, an equiaxed zone can form ahead of the columnar crystal. This transition from the columnar to equiaxed zone is now examined. Fig. 9 Grain structures of an ingot casting showing the regions of chill, columnar, and equiaxed grains The basic concepts...
Abstract
Nonplanar microstructures form most frequently during the solidification of alloys, and play a crucial role in governing the properties of the solidified material. This article emphasizes the basic ideas, characteristic lengths, and the processing conditions required to control the columnar and equiaxed microstructures. The formation of cellular and dendritic structures in one- and two-phase structures is presented with emphasis on the effect of processing conditions and composition on the selection of microstructure and microstructure scales.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005525
EISBN: 978-1-62708-197-9
... equations. heat transfer properties mass transfer coefficient metals and alloys numerical methods solidification IN THE PROCESSING OF MOST METAL PRODUCTS, a critical step is the solidification of an alloy from a melt to make an ingot or a part with a particular shape. Frequently...
Abstract
This article presents conservation equations for heat, species, mass, and momentum to predict transport phenomena during solidification processing. It presents transport equations and several examples of their applications to illustrate the physics present in alloy solidification. The examples demonstrate the utility of scaling analysis to explain the fundamental physics in a process and to demonstrate the limitations of simplifying assumptions. The article concludes with information on the solidification behavior of alloys as predicted by full numerical solutions of the transport equations.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006222
EISBN: 978-1-62708-163-4
... Abstract This article begins with the one-component, or unary, diagram for magnesium. The diagram shows what phases are present as a function of the temperature and pressure. When two metals are mixed in the liquid state to produce a solution, the resulting alloy is called a binary alloy...
Abstract
This article begins with the one-component, or unary, diagram for magnesium. The diagram shows what phases are present as a function of the temperature and pressure. When two metals are mixed in the liquid state to produce a solution, the resulting alloy is called a binary alloy. The article describes the various types of solid solutions such as interstitial solid solutions and substitutional solid solutions. Free energy is important because it determines whether or not a phase transformation is thermodynamically possible. The article discusses the thermodynamics of phase transformations and free energy, as well as kinetics of phase transformations. It concludes with a description of solid-state phase transformations that occur when one or more parent phases, usually on cooling, produces a phase or phases.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003161
EISBN: 978-1-62708-199-3
... Abstract Fusible alloys, eutectic and noneutectic, include a group of binary, ternary, quaternary, and quinary alloys containing bismuth, lead, tin, cadmium, and indium that melt at relatively low temperatures. This article describes the composition and mechanical properties of these alloys...
Abstract
Fusible alloys, eutectic and noneutectic, include a group of binary, ternary, quaternary, and quinary alloys containing bismuth, lead, tin, cadmium, and indium that melt at relatively low temperatures. This article describes the composition and mechanical properties of these alloys and lists the values of their composition and melting temperatures.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001426
EISBN: 978-1-62708-173-3
... Abstract This article discusses special metallurgical considerations during the fusion welding of refractory metal alloys. These considerations are: microstructure, interstitial impurities, and welding conditions that are considered during the fusion welding of refractory metal alloys...
Abstract
This article discusses special metallurgical considerations during the fusion welding of refractory metal alloys. These considerations are: microstructure, interstitial impurities, and welding conditions that are considered during the fusion welding of refractory metal alloys, including tantalum, niobium, rhenium, molybdenum, and tungsten. Refractory metal alloys are discussed in the order of decreasing weldability: tantalum, niobium, rhenium, molybdenum, and tungsten.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003734
EISBN: 978-1-62708-177-1
... reactions of this type have been registered in metallic systems, according to standard reference books on the contribution of binary alloys ( Ref 18 , 19 , 20 ). In the majority of the 800 established phase diagrams involving peritectic phase equilibria, a congruently melting intermetallic or a high...
Abstract
Solid-state transformations from invariant reactions are of three types: eutectoid, peritectoid, and monotectoid transformations. This article focuses on structures from eutectoid transformations with an emphasis on the classic iron-carbon system of steel. It illustrates the morphology of a pearlite nodule and the effect of various substitutional alloy elements on the eutectoid transformation temperature and effective carbon content, respectively. Peritectic and peritectoid phase equilibria are very common in several binary systems. The article reviews structures from peritectoid reactions and details the formation of peritectic structures that can occur by at least three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005214
EISBN: 978-1-62708-187-0
... Phenomena in Iron-Base Alloys , Scand. J. Metall. , Vol 5 , 1976 , p 27 – 32 25. Fredriksson H. , The Mechanism of the Peritectic Reaction in Iron-Base Alloys , Met. Sci. , Vol 11 , 1976 , p 77 – 86 10.1179/msc.1976.10.3.77 26. Fredriksson H. , Transition from Peritectic...
Abstract
This article describes the three solidification mechanisms of peritectic structures, namely, peritectic reaction, peritectic transformation, and direct precipitation. It discusses the theoretical analysis, which shows that the rate of the peritectic transformation is influenced by the diffusion rate and the extension of the beta-phase region in the phase diagram. The article also provides information on the peritectic transformations in multicomponent systems.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003155
EISBN: 978-1-62708-199-3
... for the confinement of ionized gases in controlled thermonuclear fusion. Basic Principles The critical temperature varies from superconductor to superconductor, but lies between approximately 1 and 20 K for metals and alloys. More recently developed ceramic superconductors have critical temperatures exceeding...
Abstract
Superconductors are materials that exhibit a complete disappearance of electrical resistivity on lowering the temperature below the critical temperature. A superconducting material must exhibit perfect diamagnetism, that is, the complete exclusion of an applied magnetic field from the bulk of the superconductor. Superconducting materials that have received the most attention are niobium-titanium superconductors (the most widely used superconductor), A15 compounds (in which class the important ordered intermetallic Nb3Sn lies), ternary molybdenum chalcogenides (Chevrel phases), and high-temperature ceramic superconductors. This article provides an overview of basic principles of superconductors and the different classes of superconducting materials and their general characteristics.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003124
EISBN: 978-1-62708-199-3
... ). Fig. 1 The principal aluminum alloys Fig. 2 Equilibrium binary solid solubility as a function of temperature for alloying elements most frequently added to aluminum For those elements that form solid solutions, the strengthening effect when the element is in solution tends...
Abstract
The physical and mechanical properties of aluminum alloy can be improved by strengthening mechanisms such as strain hardening used for non-heat treatable aluminum alloy and precipitation hardening used for heat treatable aluminum alloy. This article focuses on the effect of strengthening mechanisms on the physical and mechanical properties of non-heat treatable and heat treatable aluminum alloys. It describes the use of the aluminum alloy phase diagram in determining the melting temperature, solidification path, equilibrium phases, and explains the effect of alloying element in phase formation.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003616
EISBN: 978-1-62708-182-5
... 8. Moffat W.G. , The Handbook of Binary Phase Diagrams , General Electric, 1978 9. Massalski T.B. , Ed., Binary Alloy Phase Diagrams , American Society for Metals , 1986 10. Kawazoe Y. , Masumoto T. , Suzuki K. , Inoue A. , Tsai A.P. , Yu...
Abstract
The corrosion behavior of a metal or alloy is determined by its composition and structural features, the environment and stresses to which it is exposed, and the behavior of any corrosion products generated. This article provides a detailed discussion on the fundamentals of pure metals, impure metals, and alloys. It highlights the ways in which the metallurgical variables, namely, composition and structure, influence the corrosion properties of metals and alloys in aqueous environment.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006228
EISBN: 978-1-62708-163-4
... that are very common in several binary systems. The addition of substitutional alloying elements causes the eutectoid composition and temperature to shift in the iron-carbon system. The article graphically illustrates the effect of various substitutional alloying elements on the eutectoid transformation...
Abstract
Eutectoid and peritectoid transformations are classified as solid-state invariant transformations. This article focuses primarily on the structures from eutectoid transformations with emphasis on the classic iron-carbon system of steel. It reviews peritectoid phase equilibria that are very common in several binary systems. The addition of substitutional alloying elements causes the eutectoid composition and temperature to shift in the iron-carbon system. The article graphically illustrates the effect of various substitutional alloying elements on the eutectoid transformation temperature and effective carbon content. The partitioning effect of substitutional alloying elements, such as chromium, manganese, and silicon, in pearlitic steel is also illustrated.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005511
EISBN: 978-1-62708-197-9
... for industrial applications. Multicomponent Phase Diagram Calculation Examples In example 1, phase diagram calculation is used to predict bulk metallic glass formability. In example 2, calculation is made for nickel alloys, focusing on the major concerns in the development of nickel-base superalloys...
Abstract
This article focuses on the industrial applications of phase diagrams. It presents examples to illustrate how a multicomponent phase diagram calculation can be readily useful for industrial applications. The article demonstrates how the integration of a phase diagram calculation with kinetic and microstructural evolution models greatly enhances the power of the CALPHAD approach in materials design and processing development. It also discusses the limitations of the CALPHAD approach.
1