1-20 of 314

Search Results for transformation texture modeling

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... Abstract This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005401
EISBN: 978-1-62708-196-2
... the phase equilibria, crystallography, and deformation behavior of titanium and titanium alloys. The article describes the modeling and simulation of recrystallization and grain growth of single-phase beta and single-phase alpha titanium. The deformation- and transformation-texture evolution of two-phase...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004029
EISBN: 978-1-62708-185-6
... Abstract The processing of steel involves five distinct sets of texture development mechanisms, namely, austenite deformation, austenite recrystallization, gamma-to-alpha transformation, ferrite deformation, and static recrystallization during annealing after cold rolling. This article provides...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003744
EISBN: 978-1-62708-177-1
... with information on texture evolution through modeling. deformation external magnetic fields grain growth grain-boundary metal-fabrication microtexture recrystallization solidification texture evolution modeling texture gradients textured structure thin-film deposition THE WORD TEXTURE...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
.../transformation textures. The development of such modeling techniques has greatly accelerated in recent years due to the ready availability of powerful computer resources. Deformation texture modeling is more advanced compared to efforts for predicting recrystallization/transformation textures. Deformation...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005532
EISBN: 978-1-62708-197-9
... Abstract This article discusses the central aspect of anisotropy modeling, namely, texture measurement and analysis. It provides an overview of the methods available for characterizing crystallographic preferred orientation, or texture, in polycrystalline materials. These methods include pole...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005418
EISBN: 978-1-62708-196-2
... on the measurement and representation of textures as well as prediction of texture evolution in single-phase materials and two-phase aggregates. self-consistent modeling continuum micromechanics single-crystal deformation texture evolution modeling single-phase materials two-phase aggregates When...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005425
EISBN: 978-1-62708-196-2
... processes; powder consolidation Finite-element/finite-difference models solidification processes Fluid flow, solidification in solidification processes Nucleation and growth models Plethora of phase transformations, recrystallization, etc. Crystal-plasticity models Deformation-texture evolution...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006977
EISBN: 978-1-62708-439-0
... transformations (i.e., solidification) that occur. Putting aside machine-specific process settings, the key underlying physics that influence structure formation during the liquid-to-solid phase transformation are the solidification rate ( R ) and the thermal gradient ( G ) at the liquid-solid interface...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
... of microstructure evolution. cellular automata dynamic recovery grain growth hot working microstructure evolution microstructure evolution modeling Monte-Carlo techniques plastic flow recrystallization static recovery texture evolution models thermomechanical processing IN PROCESS DESIGN...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
... applications (such producing beverage cans or auto-body panels). It is the connection between texture and anisotropy that makes the control of texture development in metal deformation processes of primary interest in achieving product quality. Modeling of texture evolution thus becomes a tool of great value...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005408
EISBN: 978-1-62708-196-2
... of the thermomechanical production of aluminum sheet and, in particular, highlights the main effects governing the evolution of microstructure and texture. The simulation tools used to model the evolution of microchemistry, microstructure, and texture upon deformation and recrystallization of aluminum alloys...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
... tools are uncovering the complexities of grain growth within a textured material or a material with an evolving texture. Computer process modeling will continue to be at the forefront of advanced TMP methods. Alloy and process design will being further linked through the use of these advanced...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005400
EISBN: 978-1-62708-196-2
... Abstract This article presents the Schmid's law that describes the response of crystal structures to loading. It describes the Taylor model to calculate the uniaxial yield stress of an isotropic face-centered cubic aggregate in terms of critical resolved shear stress. The article discusses...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005424
EISBN: 978-1-62708-196-2
... processing of metallic solids are influenced by the presence of the anisotropic properties. Further, processing affects the anisotropy by altering the crystallographic texture and other features of the microstructural state. To model the processing of metallic materials effectively, especially those...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
... to compute the effects on recrystallization ( Ref 16 , 17 ). The semiempirical models for evolution of the matrix microstructure keep account of accumulated “retained strain” and grain elongation to provide an input to models of the microstructural changes that take place as a result of phase transformation...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005422
EISBN: 978-1-62708-196-2
... of the microstructure, formulation of the equation of motion, and implementation of the topological transformations. The article presents examples that illustrate the simulation of physical phenomena to demonstrate the predictive power and flexibility of network models. vertex models grain growth grain-boundary...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
... can be more realistic, and the modeler must decide what level of information is necessary to capture the essential features to be modeled. For example, the kinetics of dynamic recrystallization of copper ( Ref 11 ) and austenite ( Ref 12 ) can be largely reproduced without the inclusion of any texture...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006981
EISBN: 978-1-62708-439-0
... from materials characterization, process monitoring, part inspection, and testing are commonly used across many AM activities. The data can be stored and exchanged in various formats, for example, Microsoft Excel spreadsheets, computer-aided design (CAD) models, images, PDF documents, and so...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007034
EISBN: 978-1-62708-387-4
... orientation developed in the transformation texture through a process known as variant selection ( Ref 2 , 3 , 11 ). Under slow-to-moderate cooling rates, the α phase forms as a series of parallel laths (or lamellae) called α colonies. The colony size is controlled by the cooling rate...