Skip Nav Destination
Close Modal
Search Results for
traditional amalgam alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 21 Search Results for
traditional amalgam alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005670
EISBN: 978-1-62708-198-6
... on the ancient history of noble and precious metal use in dentistry is provided. The article discusses the use of direct gold dental filling materials, direct silver dental filling materials, traditional amalgam alloys, high-copper amalgam alloys, and gallium alloys in biomedical applications. It also provides...
Abstract
This article focuses on the use of noble and precious metals for biomedical applications. These include gold, platinum, palladium, ruthenium, rhodium, iridium, and osmium. The physical and mechanical properties of noble and precious metals are presented in tables. A brief discussion on the ancient history of noble and precious metal use in dentistry is provided. The article discusses the use of direct gold dental filling materials, direct silver dental filling materials, traditional amalgam alloys, high-copper amalgam alloys, and gallium alloys in biomedical applications. It also provides information on gold coatings and iridium oxide coatings for stents.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005677
EISBN: 978-1-62708-198-6
... Alloy crown (Au-Ag-Cu) 125 (HV) 220 32 425 62 … … Amalgam Admixed … … … 40 5.8 340 49 Unicompositional … … … 50 7.3 450 65 Orthodontic wires Stainless steel 540 1500 218 2000 290 … … Ni-Ti-Co … 340 49 … … … … … 960 139...
Abstract
This article reviews friction and wear of various dental materials that have been studied by fundamental wear measurements, simulated service wear measurements, and clinical measurements. The materials include dental amalgam, composite restorative materials, pit and fissure sealants, dental cements, porcelain and plastic denture teeth, dental feldspathic porcelain and ceramics, endodontic instruments, periodontal instruments, and orthodontic wires. The article describes the correlations of properties such as the hardness, fracture toughness, and wear. It provides information on wear mechanism such as the sliding adhesive wear, two-body abrasion, three-body abrasion, erosion, and fatigue.
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001087
EISBN: 978-1-62708-162-7
... conductivity, and low solubility in iron. The good mechanical properties of certain silver-tin-mercury and silver-tin-copper-mercury alloys, and the small dimensional changes that occur during setting of these alloys, are the basis for the extended use of silver in dental amalgams (see the discussion...
Abstract
Precious metals are of inestimable value to modern civilization. This article discusses the resources and consumption, trade practices, and special properties of precious metals and its alloys, including ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold, and tabulates the industrial applications of precious metals. It provides information on the commercial forms (wire, rod, sheet, strip, ribbon, and foil) and uses of precious metals, including semifinished products, precious metal powders, industrial uses, coatings, and jewelry.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003150
EISBN: 978-1-62708-199-3
... of sterling silver—the standard grade (UNS P07931) and silversmiths grade (P07932), which has closer limits on the allowable silver and copper contents. Silver alloys containing copper (e.g., Ag-10%Cu) are traditional coinage alloys. Dental Amalgam Dental amalgam is a silver-mercury alloy for restoring...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... alloy systems are used in dentistry ( Ref 19 ), the main one for which there are concerns regarding corrosion and fatigue is dental amalgam. This material is discussed in the last portion of this section. Uses in Various Surgical Specialties Metallic biomaterials are used in a great many surgical...
Abstract
This article describes mechanical/electrochemical phenomena related to in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article presents the factors related to the use of surgical implants and their deterioration in the body environment, including biomedical aspects, chemical environment, and electrochemical fundamentals needed for characterizing CF and SCC. It provides a discussion on the use of metallic biomaterials in surgical implant applications, such as orthopedic, cardiovascular surgery, and dentistry. It addresses key issues related to the simulation of an in vivo environment, service conditions, and data interpretation. These include the frequency of dynamic loading, electrolyte chemistry, applicable loading modes, cracking mode superposition, and surface area effects. The article explains the fundamentals of CF and SCC, and presents the test findings from laboratory, in vivo, and retrieval studies.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004208
EISBN: 978-1-62708-184-9
... cracking (SCC). It discusses some of the mechanical and electrochemical phenomena related to the in vivo degradation of materials used for biomedical applications. These materials include stainless steels, cobalt and titanium-base alloy systems, and dental amalgam. The article addresses key issues related...
Abstract
This article provides information on biomedical aspects such as active biological responses and the chemical environment characterizing the internal physiological milieu, as well as electrochemical fundamentals needed for characterizing corrosion fatigue (CF) and stress-corrosion cracking (SCC). It discusses some of the mechanical and electrochemical phenomena related to the in vivo degradation of materials used for biomedical applications. These materials include stainless steels, cobalt and titanium-base alloy systems, and dental amalgam. The article addresses key issues related to the simulation of the in vivo environment, service conditions, and data interpretation. The factors influencing susceptibility to CF and SCC are reviewed. The article describes the testing methodology of CF and SCC. It also summarizes findings from laboratory testing, in vivo testing and retrieval studies related to CF and SCC.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
... to these uses in copper-base alloys, small quantities of tin (0.75 to 1.0%) are added to copper-zinc alloys (brasses) for increased corrosion resistance. Cast leaded brasses may contain up to 4% Sn. Dental Alloys Dental alloys for making amalgams contain silver, tin, mercury, and some copper and zinc...
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and secondary production of tin and explains the uses of tin in coating, namely tinplating, electroplating, and hot dip coatings. It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid alloys, type metals, copper alloys, dental alloys, cast irons, titanium alloys, and zirconium alloys. Finally, it presents a short note on the applications of tin powder and corrosion resistance of tin.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006556
EISBN: 978-1-62708-290-7
... applications for printing copper and gold ( Ref 32 ). Additionally, EOS/AMCM also announced the use of green lasers in copper-specific systems ( Ref 33 ). Table 2 lists the thermal conductivity of gold and silver as well as some more traditional alloys processed by AM. The thermal conductivity of silver...
Abstract
The additive manufacturing technologies in the casting of precious metals are divided into two groups: indirect metal methods and direct metal methods. Besides providing a process overview of both of these methods, the focus of this article is on the characteristics, process steps, applications, and advantages of direct metal methods, namely laser melting, material extrusion, binder jetting, material jetting, and vat photopolymerization methods.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001076
EISBN: 978-1-62708-162-7
... the metal is cast). In addition, the mixing chamber provides immediate dissolution of the tin in the iron and ensures uniform distribution in the casting. Dental alloys for making amalgams contain silver, tin, mercury, and some copper and zinc. The copper increases hardness and strength, and the zinc...
Abstract
Tin is produced from both primary and secondary sources. This article discusses the chemical compositions, production, properties, microstructure and applications of tin and tin alloys. The major tin alloys discussed here are tin-antimony-copper alloy (pewter), bearing alloy, solder alloy and other alloys containing traces of tin. Data on tin consumption in the United States is presented graphically.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005186
EISBN: 978-1-62708-187-0
...: arsenical copper and tin bronze alloys Near East 3000–2500 B.C. Lost-wax casting of small objects Near East 2500 B.C. Granulation of gold and silver and their alloys Near East 2400–2200 B.C. Copper statue of Pharoah Pepi I Egypt 2000 B.C. Bronze Age Far East 1500 B.C. Iron Age...
Abstract
Casting is one of the most economical and efficient methods for producing metal parts. In terms of scale, it is well suited for everything from low-volume, prototype production runs to filling global orders for millions of parts. Casting also affords great flexibility in terms of design, readily accommodating a wide range of shapes, dimensional requirements, and configuration complexities. This article traces the history of metal casting from its beginnings to the current state, creating a timeline marked by discoveries, advancements, and influential events. It also lists some of the major markets where castings are used.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006018
EISBN: 978-1-62708-175-7
...-iron, silicon-iron Traveling wave tube magnets Platinum, cobalt Medical and dental Dental amalgam Silver, gold, alloys Prosthetics Superalloys Insulin production Zinc Operating room air filters Stainless steel, Monel, cobalt alloys Pharmaceutical final filters Stainless...
Abstract
Metal powders are used as fuels in solid propellants, fillers in various materials, such as polymers or other binder systems, and for material substitution. They are also used in food enrichment, environmental remediation market, and magnetic, electrical, and medical application areas. This article reviews some of the diverse and emerging applications of ferrous and nonferrous powders. It also discusses the functions of copier powders and the processes used frequently for copier powder coating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003067
EISBN: 978-1-62708-200-6
... Abstract This article reviews the applications of traditional glasses in architecture, transportation, construction, houseware, containers, and fibers. It also describes uses of specialty glasses for aerospace and military applications, biomedical and dental applications, chemical-resistant...
Abstract
This article reviews the applications of traditional glasses in architecture, transportation, construction, houseware, containers, and fibers. It also describes uses of specialty glasses for aerospace and military applications, biomedical and dental applications, chemical-resistant applications, lighting, information display, electronic processing and electronic devices, optical and ophthalmic products, and communications equipment.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... Bone and joint replacement, dental implants, dental restorations, heart valves Nitinol (Ni-Ti) Bone plates, stents, orthodontic wires Gold alloys Dental restorations Silver products Antibacterial agents Platinum and Pt-Ir Electrodes Hg-Ag-Sn amalgam Dental restorations Glasses...
Abstract
The biocompatibility of a material relates to its immunological response, toxicity profile, and ability to integrate with surrounding tissue without undesirable local or systemic effects on a patient. This article underscores the transformation of the medical device design ecosystem engaged as an integral part of the device ecosystem. It discusses the applications of biomaterials, including orthopedic, cardiovascular, ophthalmic, and dental applications. The article describes four major categories of biomaterials such as metals, polymers, glass and ceramics, and composites. A discussion on natural materials, nanomaterials, and stem cells is also provided. The article concludes with examples of biomaterials applications, such as endovascular devices, knee implants, and neurostimulation.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.9781627081627
EISBN: 978-1-62708-162-7
Book
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.9781627081702
EISBN: 978-1-62708-170-2
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005585
EISBN: 978-1-62708-170-2
... distributed parallel lines, usually produced with a soft abrasive buffing wheel; similar in appearance to the traditional hand-rubbed finish on silver. buttering. A form of surfacing in which one or more layers of weld metal are deposited on the groove face of one member (for example, a high-alloy weld...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005926
EISBN: 978-1-62708-166-5
... are more likely to cause soot in the furnace chamber than are ethane and methane. Inert Gases The inert gases of argon and helium are frequently used during the thermal processing of reactive metals and the alloys of these metals. Argon, significantly less costly than helium, is generally favored...
Abstract
This article provides a detailed discussion on the types of furnace atmospheres required for heat treating. These include generated exothermic-based atmospheres, generated endothermic-based atmospheres, generated exothermic-endothermic-based atmospheres, generated dissociated-ammonia-based atmospheres, industrial gas nitrogen-base atmospheres, argon atmospheres, and hydrogen atmospheres. Atmospheres for backfilling, partial pressure operation, and quenching in vacuum are also discussed. Furnace atmospheres constitute four major groups of safety hazards in heat treating: fire, explosion, toxicity, and asphyxiation. The article reviews the fundamentals of principal gases and vapors. It describes how the evaluation of the atmospheric requirements of heat treating furnaces is influenced by factors such as cost of operation and capital investment.
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.9781627081788
EISBN: 978-1-62708-178-8
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
1