Skip Nav Destination
Close Modal
Search Results for
trace element analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 659 Search Results for
trace element analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001115
EISBN: 978-1-62708-162-7
... used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio...
Abstract
The electronic microcircuit industry has placed severe demands on metal suppliers to provide metals of the highest reproducible purity attainable as a result of the constant quest for the true values of physical and chemical properties of metals. This article describes the commonly used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio test methods used to characterize purity. Tables list the values for resistance ratios of zone-refined metals and their corresponding chemical compositions, and provide an example of the detection of impurities to concentrations in the parts per billion range, utilizing a combination of the glow discharge mass spectroscopy method and Leco combustion methods.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001748
EISBN: 978-1-62708-178-8
... Abstract Neutron activation analysis (NAA) is a highly sensitive and accurate method of assaying bulk materials for trace levels of many elements. This article provides a detailed account on several types of NAA, namely, nondestructive and radiochemical thermal neutron activation, delayed...
Abstract
Neutron activation analysis (NAA) is a highly sensitive and accurate method of assaying bulk materials for trace levels of many elements. This article provides a detailed account on several types of NAA, namely, nondestructive and radiochemical thermal neutron activation, delayed neutron counting, epithermal and 14-MeV fast neutron activation, and prompt gamma activation analysis. It also includes application examples, explaining where and how each method is used and the types of elements on which they are effective.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001731
EISBN: 978-1-62708-178-8
... information on how to set up and run a variety of UV/VIS absorption tests. chemical analysis composition concentration profiles sample preparation spectrophotometry surface characterization trace element concentrations ultraviolet/visible absorption spectroscopy Overview Introduction...
Abstract
Ultraviolet/visible (UV/VIS) absorption spectroscopy is a powerful yet cost-effective tool that is widely used to identify organic compounds and to measure the concentration of principal and trace constituents in liquid, gas, and solid test samples. This article emphasizes the quantitative analysis of elements in metals and metal-bearing ores. The instrumentation required for such applications consists of a light source, a filter or wavelength selector, and some type of visual or automated sensing mechanism. The article examines common sensing options and provides helpful information on how to set up and run a variety of UV/VIS absorption tests.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006648
EISBN: 978-1-62708-213-6
... stability and sensitivity, simplicity of operation, low matrix effects, low gas consumption, and short analysis times, which have contributed to establish GDMS as a reference technique for direct determination of trace elements in solid samples and for fast depth profiling in a great variety of innovative...
Abstract
This article provides a brief account of glow discharge mass spectrometry (GDMS) for direct determination of trace elements in solid samples and for fast depth profiling in a great variety of innovative materials. It begins by describing the general principles of GDMS. This is followed by a discussion on the various components of a GDMS system as well as commercial GDMS instruments. A description of processes involved in specimen preparation and cleaning in GDMS is then presented. Various problems pertinent to multielemental calibrations in GDMS are discussed along with measures to overcome them. The article further provides information on the processes involved in the analytical setup of parameters in GDMS, covering the steps involved in the analysis of GDMS data. It ends with a section on the application and interpretation of GDMS in the metals industry.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006318
EISBN: 978-1-62708-179-5
... irons. Spectrographic analysis of charge materials and the cast iron melt composition before and after melt treatment and inoculation is a primary tool used to control trace and tramp elements in cast irons. In many cases, the acceptable elemental composition levels and ranges for trace elements is very...
Abstract
During the melting and solidification of cast irons, certain trace (minor) elements may unintentionally accumulate to an extent that they have a detrimental effect on the microstructure of castings. This article discusses the residual elements, trace elements, and tramp elements in cast irons. Elements that influence the matrix structure of cast irons are commonly classified as ferrite-promoting elements or pearlite-promoting elements. The article describes the effects of minor elements on microstructure and properties of cast irons. It discusses the use of a combination of tools to control the effects of minor elements on the structure and properties of cast irons. The article concludes with information on allowable levels of trace and tramp elements in cast irons.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001726
EISBN: 978-1-62708-178-8
... Bulk/Macroanalysis Structure Mieroanalysis Surface analysis Elemental Molecular/Comlxmnd Crystal Molecular Defects Elemental Phase distribution/ Elemental Molecular/ structure structure Morphology Compound I I Qualitative Quantitative f Qualitative Quantitative Major/ Trace/ Major/ Trace/ Major/ Trace...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006641
EISBN: 978-1-62708-213-6
..., and other classical techniques despite their usefulness for many applications. Today (2019), ICP-MS is recognized as the most widely used and most quantitative technique for trace elemental analysis. ICP-MS provides quantitative elemental concentration, isotopic ratio, and nanoparticle concentration...
Abstract
This article discusses the basic principles of inductively coupled plasma mass spectrometry (ICP-MS), covering different instruments used for performing ICP-MS analysis. The instruments covered include the sample-introduction system, ICP ion source, mass analyzer, and ion detector. Emphasis is placed on ICP-MS applications in the semiconductor, photovoltaic, materials science, and other electronics and high-technology areas.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006642
EISBN: 978-1-62708-213-6
... analysis Overview Introduction Neutron activation analysis (NAA) is a highly sensitive and accurate method of assaying bulk materials for major, minor, and trace levels of many elements. Neutron activation analysis has found broad application in materials science and in geological, biological...
Abstract
This article provides a detailed account of the concepts and applications of neutron activation analysis (NAA), covering the basic principles and neutron reactions of NAA as well as calibration methods used for NAA. The discussion also covers the factors pertinent to analytical sensitivity achievable with NAA, common neutron sources, sample-handling technique, and automated systems of NAA. The categories of NAA covered are instrumental neutron activation analysis, epithermal neutron activation analysis, radiochemical neutron activation analysis, 14 MeV fast neutron activation analysis, delayed neutron activation analysis, and prompt gamma activation analysis.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001730
EISBN: 978-1-62708-178-8
...-type excitation sources are used. Advantages of Atomic Absorption Spectrometry During the past 25 years, AAS has been one of the most widely used trace element analysis techniques, largely because of the degree of specificity provided by the use of an analyte-line light source. This reduces...
Abstract
Atomic absorption spectrometry (AAS) is generally used for measuring relatively low concentrations of approximately 70 metallic or semimetallic elements in solution samples. This article describes several features that are common to three techniques, namely, AAS, atomic emission spectrometry (AES), and atomic fluorescence spectrometry (AFS). It discusses the reasons for the extreme differences in AAS sensitivities that affect AFS and AES. The article provides information on the advantages and disadvantages of the Smith/Hieftje system and two types of background correction systems, namely, the continuum-source background correction and Zeeman background correction. It also provides a list of applications of conventional AAS equipment, which includes most of the types of samples brought to laboratories for elemental analyses.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006638
EISBN: 978-1-62708-213-6
... constituents and the low-intensity peaks of minor and trace constituents, rigorous qualitative analysis entails an iterative approach involving peak fitting and subtraction of the fitted intensities of the assigned elemental peaks to reveal lower-intensity peaks of minor and trace constituents hidden...
Abstract
This article is a detailed account of the principles of electron-excited X-ray microanalysis. It begins by discussing the physical basis of electron-excited X-ray microanalysis and the advantages and limitations of energy dispersive spectrometry (EDS) and wavelength dispersive spectrometry for electron probe microanalysis. Key concepts for performing qualitative analysis and quantitative analysis by electron-excited X-ray spectrometry are then presented. Several sources that lead to measurement uncertainties in the k-ratio/matrix corrections protocol are provided, along with the significance of the raw analytical total. Sections on accuracy of the standards-based k-ratio/matrix corrections protocol with EDS and processes of analysis when severe peak overlap occurs are also included. The article provides information on low-atomic-number elements, iterative qualitative-quantitative analysis for complex compositions, and significance of standardless analysis in the EDS software. It ends with a section on the processes involved in elemental mapping for major and minor constituents.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
.... Optical Emission Spectroscopy Optical emission spectroscopic (OES) methods are some of the most commonly used techniques in elemental analysis and alloy identification. The OES methods are commonly used in failure analysis for quantitative and qualitative determination of primary and trace elemental...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
.... X-ray fluorescence offers the same broad element detection of ICP-OES; however, the material can be analyzed as a bulk solid without dissolving the metal in an aggressive solution. For trace analysis, this method has a lower detection limit of approximately 100 ppm, depending in part, of course...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... Abstract This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... to determine both trace, major, and minor elements in a single experiment with minimum chemical interferences. Development of a similar technique, for isotope and trace analysis—namely inductively coupled plasma mass spectrometry (ICP-MS)—began in the 1980s and is currently considered as equally...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003250
EISBN: 978-1-62708-199-3
... in the visible light regime. It is not as sensitive as OES for analyzing trace elements. Detection limits are typically in the 100 to 1000 ppm range. Combustion and Inert Gas Fusion Analysis Capabilities Detection and quantification of carbon, sulfur, and dissolved gases Typical Uses...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold and precision methods, and sample requirements. The amount of material that needs to be sampled, operating principles, and limitations of the stated methods are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
... inexperienced in ceramic analysis. Methods Optical emission spectroscopy is perhaps the most common method used for major and minor constituent analyses, whereas inductively coupled plasma and atomic absorption are usually chosen for trace element work. The bulk chemistry of solid samples and powders can...
Abstract
The characterization, testing, and nondestructive evaluation of ceramics and glasses are vital to manufacturing control, property improvement, failure prevention, and quality assurance. This article provides a broad overview of characterization methods and their relationship to property control, both in the production and use of ceramics and glasses. Important aspects covered include the means for characterizing ceramics and glasses, the corresponding rationale behind them, and relationship of chemistry, phases, and microconstituents to engineering properties. The article also describes the effects that the structure of raw ceramic materials and green products and processing parameters have on the ultimate structure and properties of the processed piece. The effects that trace chemistry and processing parameters have on glass properties are discussed. The article describes mechanical tests and failure analysis techniques used for ceramics.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... solids Table 1 Analytical methods used for characterization of organic solids Technique(a) Elemental analysis Speciation Compound Isotopic or mass analysis Qualitative analysis (identification of constituents) Semiquantitative analysis (order of magnitude) Quantitative analysis...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006640
EISBN: 978-1-62708-213-6
.... By wise selection of analytical emission lines and spark conditions, modern spark OES instruments are extremely accurate and stable analytical tools. For most elements of interest, the detection limits are in the few parts per million range, in most cases sufficient also for analysis of trace elements...
Abstract
This article is a detailed account of optical emission spectroscopy (OES) for elemental analysis. It begins with a discussion on the historical background of OES and development trends in OES methods. This is followed by a description of the general principles and optical systems of OES, along with various types of emission sources commonly used for OES. Some of the processes involved in calibration and quantification of OES for direct solids analysis by the ratio method are then described. The article ends with a discussion on the applications of each type of emission sources.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001774
EISBN: 978-1-62708-178-8
... of a direct-imaging ion microscope in which the primary ion beam and secondary ion beam are clearly distinguished. This instrument is designed primarily for microstructural analysis and imaging, quantitative in-depth profiling, and trace element analysis. It is not suitable for true surface analysis, and due...
Abstract
In secondary ion mass spectroscopy (SIMS), an energetic beam of focused ions is directed at the sample surface in a high or ultrahigh vacuum (UHV) environment. The transfer of momentum from the impinging primary ions to the sample surface causes sputtering of surface atoms and molecules. This article focuses on the principles and applications of high sputter rate dynamic SIMS for depth profiling and bulk impurity analysis. It provides information on broad-beam instruments, ion microprobes, and ion microscopes, detailing their system components with illustrations. The article graphically illustrates the SIMS spectra and depth profiles of various materials. The quantitative analysis of ion-implantation profiles, instrumental features required for secondary ion imaging, the analysis of nonmetallic samples, detection sensitivity, and the applications of SIMS are also discussed.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006675
EISBN: 978-1-62708-213-6
... the most widely used, surface-sensitive, practically valuable, advanced, and cutting-edge surface-analysis methods. These techniques are capable of providing elemental composition, chemical state, and other important properties of the outermost atomic layers of metals, semiconductors, ceramics, organic...
Abstract
This article is an overview of the division Surface Analysis of this volume. The division covers various developed surface-analysis techniques, such as scanning probe and atomic force microscopy. The division focuses on the analysis of surface layers that are less than 100 nm. A quick reference summary of surface-analysis methods is presented in this article.
1