Skip Nav Destination
Close Modal
Search Results for
toughening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 228 Search Results for
toughening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009080
EISBN: 978-1-62708-177-1
... Abstract This article describes the dispersed-phase toughening of thermoset matrices by the development of multiphase-structure thermosetting matrices using rubber and/or thermoplastic materials. It discusses two main methods for manufacturing prepregs, namely, single-pass impregnation...
Abstract
This article describes the dispersed-phase toughening of thermoset matrices by the development of multiphase-structure thermosetting matrices using rubber and/or thermoplastic materials. It discusses two main methods for manufacturing prepregs, namely, single-pass impregnation and double-pass impregnation. The article illustrates reflected-light optical microscopy techniques to evaluate the morphology of thermoplastic materials for determining the material quality and correlating key microstructural features with material performance.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002418
EISBN: 978-1-62708-193-1
... of nominally brittle materials. It describes toughening by various bridging mechanisms, as well as process zone effects and their interaction with the bridging rupture zone. The article explains the phenomena that give rise to exceptional toughness and notch-insensitive mechanical behavior. It provides...
Abstract
The design of structural components with nominally brittle materials is largely determined by their elastic moduli, density, and tensile strength. This article discusses some of the factors involved in the design and reliability through considerations of toughness and ductility of nominally brittle materials. It describes toughening by various bridging mechanisms, as well as process zone effects and their interaction with the bridging rupture zone. The article explains the phenomena that give rise to exceptional toughness and notch-insensitive mechanical behavior. It provides a schematic illustration of a basic cell model to characterize the inelastic strains that occur in ceramic-matrix composites and their dependence on the interface friction.
Image
Published: 01 January 1996
Fig. 5 Toughening mechanism for ceramics: residual compression at the crack tip. Selected regions of a microstructure are induced to expand in the vicinity of the crack tip such that a local state of compression counteracts the externally applied tensile stress.
More
Image
Published: 01 January 1996
Fig. 6 Non-dimensional parameters that affect ligament toughening
More
Image
Published: 01 January 1996
Fig. 7 Resistance curve for plastic zone toughening in the presence of a rupture zone
More
Image
Published: 01 January 2001
Fig. 1 Toughening mechanisms that can be activated in a discontinuously reinforced ceramic-matrix composite. Source: Ref 7
More
Image
Published: 01 November 1995
Fig. 33 Toughening mechanisms in continuous-fiber-reinforced composites. (a) Initial debonding of fibers at the crack front, as well as fiber debonding and sliding in the crack wake. Source: Ref 147 . (b) Fiber pullout. Source: Ref 158
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
... transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009081
EISBN: 978-1-62708-177-1
... of composite failure mechanisms such as thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, dispersed-phase and rubber-toughened thermoset-matrix composite failure mechanisms, and particle...
Abstract
This article describes methods for analyzing impact-damaged composites in the aircraft industry. These include C-scan and x-radiography methods and optical microscopy. The article reviews brittle-matrix composite and tough-matrix composite failures. It explains the different types of composite failure mechanisms such as thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, dispersed-phase and rubber-toughened thermoset-matrix composite failure mechanisms, and particle interlayer-toughened composite failure mechanisms.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006918
EISBN: 978-1-62708-395-9
..., polycarbonate, and polypropylene. The article describes the micromechanisms of toughening of plastics and uses a macroscale approach of applying fracture mechanics to the fatigue life prediction of engineering polymers, building on the mechanistic concepts. It also describes the factors affecting fatigue...
Abstract
This article reviews generalized test methodologies for fatigue characterization of polymers and examines fatigue fracture mechanisms in different engineering plastics. It provides detailed micromechanistic images of crack-tip processes for a variety of semicrystalline and amorphous engineering polymers. The article describes fracture mechanics solutions and approaches to the fatigue characterization of engineering polymers when dealing with macroscale fatigue crack growth. It includes mechanistic images for high-density polyethylene, ultrahigh-molecular-weight polyethylene, nylon 6, 6, polycarbonate, and polypropylene. The article describes the micromechanisms of toughening of plastics and uses a macroscale approach of applying fracture mechanics to the fatigue life prediction of engineering polymers, building on the mechanistic concepts. It also describes the factors affecting fatigue performance of polymers.
Image
Published: 01 January 1990
Fig. 4 Scanning electron micrograph of high-purity, zirconia-toughened alumina showing dispersed zirconia phase (white) within an alumina matrix
More
Image
in Preparation and Microstructural Analysis of High-Performance Ceramics
> Metallography and Microstructures
Published: 01 December 2004
Fig. 17 Scanning electron micrograph of a zirconia toughened ceramic (ZTC), thermally etched in air at 1300 °C (2730 °F). Lighter, tetragonal ZrO 2 grains are dispersed in the Al 2 O 3 matrix. The parallel arrays of facets within the grains are related to the ZTC crystallography.
More
Image
Published: 01 December 2004
Fig. 12 Ultrathin section of a particle-modified interlayer-toughened composite material. Transmitted-light Hoffman modulation contrast, 20× objective
More
Image
in Viewing Composite Specimens Using Reflected Light Microscopy[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 8 Cross section of a polished interlayer-toughened composite that was lightly etched showing height differences on the sample surface using reflected-light differential interference contrast. 10× objective
More
Image
in Viewing Composite Specimens Using Reflected Light Microscopy[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 9 Cross sections of an interlayer-toughened composite material. (a) Bright-field illumination, 25× objective. (b) Same view but after the addition of a solvent-based laser dye (Magnaflux Zyglo, Magnaflux Corp.) to the sample surface. The laser dye is preferentially absorbed
More
Image
Published: 01 December 2004
Fig. 15 Microcracks in the intraply region of an interlayer-toughened carbon fiber composite material that terminated at the interlayer region. Epi-fluorescence, 390–440 nm excitation, 25× objective
More
Image
Published: 01 December 2004
Fig. 2 Micrograph of a carbon fiber composite material that was toughened using two rubber materials of different molecular weight. Two different phase morphologies are observed, corresponding to the different tougheners. Ultrathin section. Transmitted light, Hoffman modulation contrast, 40
More
Image
Published: 01 December 2004
Fig. 3 Dispersed-phase-toughened carbon fiber composite material that was sectioned at an oblique angle to obtain a larger view of the interlayer region. Large, irregular ases, with some phases spherical and hollow, were found in the interlayer area and extended into the intraply area
More
Image
Published: 01 December 2004
Fig. 4 Dispersed-phase-toughened carbon fiber composite material that was sectioned at an oblique angle to obtain a larger view of the interlayer region. A complex morphology was revealed, which was also present in the intraply area. Ultrathin section. Transmitted light, differential
More
Image
Published: 01 December 2004
Fig. 8 Large view of a cross section of an interlayer-toughened composite showing multiple plies and interlayer regions. Bright-field illumination, 10× objective
More
1