Skip Nav Destination
Close Modal
Search Results for
torch soldering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 166 Search Results for
torch soldering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001394
EISBN: 978-1-62708-173-3
... Abstract Torch soldering utilizes a fuel gas flame as the heat source in the soldering process to produce a leak-tight assembly with some degree of mechanical strength. This article describes the advantages, limitations, and applications of torch soldering. It reviews the equipment used...
Abstract
Torch soldering utilizes a fuel gas flame as the heat source in the soldering process to produce a leak-tight assembly with some degree of mechanical strength. This article describes the advantages, limitations, and applications of torch soldering. It reviews the equipment used and the basic heating techniques required for the soldering.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005647
EISBN: 978-1-62708-174-0
... TB torch brazing tcp topologically close-packed TEM transmission electron microscope/microscopy TGA thermogravimetric analysis TGSCC transgranular stress-corrosion cracking TIG tungsten inert gas (welding) TMCP thermomechanically controlled process TS torch soldering...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
... to convey duced in a joint welded from one side. ce in the torch nozzle as the plasma jet. oxygen to the point of cutting in oxygen metal arc cutting (MAC) Any of a group of oven soldering A nonstandard term for furnace lance cutting. arc cutting processes that serves metals by soldering. oxygen lance...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0005663
EISBN: 978-1-62708-173-3
... root of ing REF relative erosion factor TIG tungsten inert gas (welding) approximately; similar to TMCP thermomechanically controlled proc- rf radio frequency a partial derivative ess RH relative humidity TS torch soldering Stefan-Boltzmann constant TTT time-temperature transformation 'Y shear strain...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001346
EISBN: 978-1-62708-173-3
... where conditions require rapid and highly active fluxing action. They can be applied as solutions, pastes, or dry salts in many general soldering applications. They function equally well with torch, oven, resistance, or induction soldering methods, because they neither char nor burn. These fluxes can...
Abstract
Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base fluxes, organic fluxes, inorganic fluxes, and synthetically activated fluxes, are reviewed. The article describes the joint design and precleaning and surface preparation for soldering. It addresses some general considerations in the soldering of electronic devices. Soldering process parameters, affecting wetting and spreading phenomena, such as temperature, time, vapor pressure, metallurgical and chemical nature of the surfaces, and surface geometry, are discussed. The article also describes the applications of furnace soldering, resistance soldering, infrared soldering, and ultrasonic soldering. It contains a table that lists tests commonly used to evaluate the solderability properties of selected soldered components.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.9781627081740
EISBN: 978-1-62708-174-0
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.9781627081733
EISBN: 978-1-62708-173-3
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003211
EISBN: 978-1-62708-199-3
...: Soldering iron or bit Flame or torch soldering Hot dip soldering Induction soldering Resistance soldering Furnace soldering Infrared soldering Ultrasonic soldering Wave soldering Laser soldering Hot gas soldering Vapor-phase soldering Each of the methods is described...
Abstract
Soldering involves heating a joint to a suitable temperature and using a filler metal (solder) that melts below 450 deg C (840 deg F). Beginning with an overview of the specification and standards and applications, this article discusses the principal levels and effects of the most common impurity elements in tin-lead solders. It describes the various processes involved in the successful soldering of joints, including shaping the parts to fit closely together; cleaning and preparing the surfaces to be joined; applying a flux; assembling the parts; and applying the heat and solder.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... welding, in particular, it appears as shown schematically in Fig. 3 . There is a region right at the end of the gas torch where there is no flame, because combustion has not yet taken place. Beyond this colorless region is a distinct whitish-yellow to white inner cone in which primary combustion has...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006302
EISBN: 978-1-62708-179-5
... advantages of both brazing and soldering. It describes the brazing and soldering of cast irons, as well as the selection of brazing filler material. The article discusses various brazing methods: torch brazing, induction brazing, salt-bath brazing, and furnace brazing. It concludes with information...
Abstract
Brazing and soldering are done at temperatures below the solidus temperature of the base material but high enough to melt the filler metal and allow the liquid filler metal to wet the surface and spread into the joint gap by capillary action. This article discusses the common advantages of both brazing and soldering. It describes the brazing and soldering of cast irons, as well as the selection of brazing filler material. The article discusses various brazing methods: torch brazing, induction brazing, salt-bath brazing, and furnace brazing. It concludes with information on the application examples of brazing of cast iron.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
..., chromium oxide films must be adequately removed to enhance solderability. Types of soldering processes used to join stainless steels include iron soldering (the soldering iron or bit), torch soldering, furnace and infrared soldering, dip soldering, resistance soldering, induction soldering, and laser...
Abstract
Fabrication of wrought stainless steels requires use of greater power, more frequent repair or replacement of processing equipment, and application of procedures to minimize or correct surface contamination because of its greater strength, hardness, ductility, work hardenability and corrosion resistance. This article provides a detailed account of such difficulties encountered in the fabrication of wrought stainless steel by forming, forging, cold working, machining, heat treating, and joining processes. Stainless steels are subjected to various heat treatments such as annealing, hardening, and stress relieving. Stainless steels are commonly joined by welding, brazing, and soldering. The article lists the procedures and precautions that should be instituted during welding to ensure optimum corrosion resistance and mechanical properties in the completed assembly.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005756
EISBN: 978-1-62708-171-9
..., and welding processes. Flame spray, high-velocity oxyfuel, and gas flame welding Optical radiation Welding goggles or welding face shield. Typical shades: gas welding, 4–8; cutting, 3–6; brazing, 3–4 Cutting, torch brazing, torch soldering Optical radiation Spectacles or welding face shield. Typical...
Abstract
This article provides information on personal protective equipment (PPE), consistent with the Occupational Safety and Health Administration's Personal Protective Equipment Standard (29 CFR 1910.132-138). This standard is intended to protect individuals from the risk of injury by creating a barrier against workplace hazards. This article provides guidelines for establishing PPE programs with an overview of the responsibilities for employers, supervisors, and employees, assessing hazards associated with thermal spray operations, and training workers about PPE, as well as guidelines for selecting, using, and maintaining PPE. It presents an overview of eye, face, head, hand, foot, hearing, fall, and respiratory protection. Respiratory and hearing protection should be used in conjunction with industrial hygiene monitoring.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001344
EISBN: 978-1-62708-173-3
...; ultrasonics; resistance; oven Furnace; chemical reaction; induction; torch; infared Plasma; electron beam; tungsten and submerged arc; resistance; laser Tendency to warp or burn Atypical Atypical Potential distortion and warpage of base-metal likely Residual stresses … … Likely around weld area...
Abstract
This article presents an introduction to brazing, including information on its mechanics, advantages, and limitations. It reviews soldering with emphasis on chronology, solder metals, and flux technology. The article also provides useful information on mass, wave, and drag soldering. It presents a table which contains information on the comparison of soldering, brazing, and welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... … … <500 10 12 500–1000 11 14 Oxyfuel gas cutting (steel) (b) 25 <1 … … 3, 4 25–100 1–6 … … 4, 5 150 >6 … … 5, 6 Torch brazing … … … … 3, 4 Torch soldering … … … … 2 (a) To select the best shade for the application, first select a dark shade...
Abstract
Safety is an important consideration in all welding, cutting, and related work. This article discusses the basic elements of safety general to all welding, cutting, and related processes. It includes safety procedures common to a variety of applications. The most important component of an effective safety and health program is management support and direction. The article reviews the role of management, training, housekeeping, and public demonstrations in welding safety to minimize personal injury and property damage. It provides information on the safety measures for eye and face protection in various welding and cutting operations. Injuries and fatalities from electric shock in welding and cutting operations can occur if proper precautionary measures are not followed. The article discusses the electrical safety aspects to be considered for various welding and cutting operations.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
... States soon after; this technique is still widely used on printed wiring boards. Brazing has also evolved significantly. The introduction of torch brazing, furnace brazing, and vacuum brazing has expanded the application of brazing to different material systems such as aluminum, stainless steel...
Abstract
This article describes the factors considered in the analysis of brazeability and solderability of engineering materials. These are the wetting and spreading behavior, joint mechanical properties, corrosion resistance, metallurgical considerations, and residual stress levels. It discusses the application of brazed and soldered joints in sophisticated mechanical assemblies, such as aerospace equipment, chemical reactors, electronic packaging, nuclear applications, and heat exchangers. The article also provides a detailed discussion on the joining process characteristics of different types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys; refractory metals; cobalt-base alloys; and ceramic materials.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005856
EISBN: 978-1-62708-167-2
... metals. Brass can also be soldered or brazed with most other base metals. Mild steels: High volumes most often are brazed in an atmospherically controlled furnace. It is feasible to braze or solder in open air using induction or torch as the heat source. The biggest drawbacks are the costs...
Abstract
This article focuses on the process design set-up procedure for brazing and soldering. It provides a detailed account of the types of base metals that can be joined by these processes, and reviews the factors to be considered to enhance the joint design. Criteria for selection of the right induction heating equipment to carry out the brazing or soldering operation are also provided. The article describes the types of brazing filler metals and joint designs. It also presents the types of inspection methods, namely, mechanical and visual, used to determine the quality of the brazed joint. Important considerations for the automation of induction-heated brazing applications are also discussed. The article concludes by emphasizing the need for documenting an in-control process which is a vitally important reference for questions or problems arising in the machine settings or part quality.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001400
EISBN: 978-1-62708-173-3
.... As expected, the limited magnetic field intensity causes this technique to have very low coupling. The heating area can be extended by manually scanning the coil over a larger area (such as is done in torch heating). Preplaced Solder Soldering by induction heating necessarily implies joints designed...
Abstract
This article describes resistivity effects and Curie temperature effects on coupling efficiency during induction heating in the soldering operation. It discusses the effects of workpiece geometry during the induction heating. The practices associated with the use of preplaced solder are reviewed. The article provides useful information on setup parameters and safety concerns for the use of induction heating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003210
EISBN: 978-1-62708-199-3
... Abstract This article provides information about the selection of brazing processes and filler metals and describes the brazing (heating) methods, including manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing and specialized brazing processes...
Abstract
This article provides information about the selection of brazing processes and filler metals and describes the brazing (heating) methods, including manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing and specialized brazing processes such as diffusion and exothermic brazing. The article explains joint design, filler materials, fuel gases, equipment, and fluxes in the brazing methods. The article also describes the brazing of steels, stainless steels, cast irons, heat-resistant alloys, aluminum alloys, copper and copper alloys, and titanium and titanium alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003205
EISBN: 978-1-62708-199-3
... welding Torch brazing Furnace brazing Induction brazing Resistance brazing Dip brazing Infrared brazing Diffusion brazing Soldering Carbon steel S X X X X X X X X X X X X X X X X X I X X X X X X X X X X X X X X X X X X M X X X X X...
Abstract
This article discusses different types of joining processes, including welding, brazing, soldering, mechanical fastening, and adhesive bonding. It examines two broad classes of welding: fusion welding and solid-state welding. The article discusses the process selection considerations for welding, brazing, and soldering. It also describes joint design considerations such as selection of weld joints and welds.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006079
EISBN: 978-1-62708-175-7
.... The plasma transferred arc process provides more dilution than the manual torch process, whereas plasma spray provides essentially no dilution. More dilution can make the deposit tougher and more resistant to cracking. In practice, hardfacing processes and techniques should be selected to control...
Abstract
Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications and the specific powder properties and characteristics they require.
1