Skip Nav Destination
Close Modal
Search Results for
tolerancing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 36 Search Results for
tolerancing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1997
Fig. 10 Geometric dimensioning and tolerancing symbols and characteristics. Source: Ref 9
More
Image
Published: 01 January 1990
Fig. 33 Schematic showing mismatch in an extrusion. Definition of mismatch tolerance in terms of total indicator reading for values given in text
More
Image
Published: 30 June 2023
Fig. 9 Simplified cartography of formats, segmented by focus. (Some formats such as STEP and AMF include more than one phase area of application.) GD&T, geometric dimensioning and tolerancing; AM, additive manufacturing; CNC, computer numerical control
More
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004035
EISBN: 978-1-62708-185-6
... summary in the form of a checklist. datum planes dimensioning draft allowance finish allowance forging design tolerancing tooling points A DIMENSION is a numerical value, typically expressed in decimals of an inch, fractions of an inch (used more so in the past), and decimals of a metric...
Abstract
The design of forging operations; consisting of dies, fixturing, and parts; requires a consistent and unambiguous method for representing critical dimensions and tolerances. This article presents a dimensioning process, based on tooling points and datum planes, with the potential to simplify geometries while minimizing tolerance stack-ups. The method also facilitates inspection liaison between vendors and users because fixturing is easy to duplicate and tooling points are consistent from forging to finish-machined part. The article focuses on the most common dimensional tolerances for closed-die forgings, including finish allowances for machining, length and width tolerances, die-wear tolerance, match tolerances, die-closure or thickness tolerances, straightness and flatness tolerances, radii tolerances, flash-extension tolerances, and surface tolerances. It also contains a convenient summary in the form of a checklist.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002447
EISBN: 978-1-62708-194-8
... the results. (3) Use a computer simulation model to simulate the design and build of the product including the three-dimensional geometry, geometric dimensioning and tolerancing schemes, assembly method variation, assembly sequence, and any known part deflection or distortion. As previously mentioned...
Abstract
The objective of dimensional management is to create a design and process that absorbs as much variation as possible without affecting the function of the product. This article describes the steps followed by the dimensional management process. These include defining product dimensional requirements, determining process and product requirements, ensuring accurate documentation, developing a measurement plan that validates product requirements, establishing manufacturing capabilities versus design intent, and establishing production-to-design feedback loop. The article discusses the simulation model in terms of a functional feature product model, component part variation, assembly method variation, measurement schemes, and assembly sequences.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006967
EISBN: 978-1-62708-439-0
... of the scanner. Point clouds or full-surface meshes can then be compared to computer-aided design (CAD) nominal surfaces, giving a detailed representation of part deviations (often displayed as a color map for ease of visualization). Geometric dimensioning and tolerancing (GD&T) can also be evaluated...
Abstract
As additive manufacturing (AM) gains maturity as a manufacturing technique for production in many industrial sectors, inspection as a tool for quality control gains importance. This article is focused on the field of dimensional metrology, which is typically concerned with the verification of size, location, form, and surface topography of geometric features. This is split into two categories: geometric (size, location, form) and surface measurement (topography). The article also focuses on applicable inspection technologies, and it discusses the context within digital thread manufacturing. A case study on the Digital Inspection Requirements Enhancing Coverage and Traceability (DIRECT) is also presented.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002448
EISBN: 978-1-62708-194-8
..., and in the dimensions as a limit or using the ANSI geometric dimensioning and tolerancing (GD&T) notation ( Fig. 10 ). Fig. 10 Geometric dimensioning and tolerancing symbols and characteristics. Source: Ref 9 The variety of approaches to tolerance analysis are beyond the scope of this article (see...
Abstract
Documentation must be focused toward explaining a specific task such as design process, by conveying the needs of product engineering, materials engineering, and manufacturing. This article describes how documentation supports the process of bringing a product to market, who uses the information, and how it serves as a key form of communication, with examples. It discusses the key features that most documents must define. The article describes the requirements of engineering and manufacturing and how drawings are used as a communication medium.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002426
EISBN: 978-1-62708-194-8
..., even before exact dimensions are assigned, designers can and should think ahead about the dimensions or other characteristics (e.g., flatness) that will need tight tolerancing to achieve the desired functionality. Configurations should be developed, if possible, that reduce the number...
Abstract
This article discusses the conceptual and configuration design of special-purpose parts that are designed and manufactured especially for use in a particular application. It provides a discussion on the issues considered in designing of parts, including, functionality; the relationship of the part to the whole assembly or subassembly; material and process selection; configuration; and tolerances. The article discusses the qualitative physical reasoning and qualitative reasoning that assist in developing part configuration alternatives.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0005752
EISBN: 978-1-62708-194-8
... ductile-brittle transition temperature amplitude to the mean stress de direct current gal gallon A angstrom DFA design for assembly GD&T geometric dimensioning and tolerancing ABC activity-based costing DFD design for disassembly ac alternating current DFE design for the environment GPa gigapascal AI...
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001230
EISBN: 978-1-62708-170-2
.... The final article in this Section describes these relationships and presents some guidelines relative to advanced materials. References References 1. Tolerancing and Metrology , Special Section, Manufacturing Review , Vol 6 ( No. 4 ), Dec 1993 2. Machinery's Handbook (latest ed...
Abstract
This article focuses on the various technology drivers for finishing methods, namely, tolerance, consistency, surface quality, and productivity. Every finishing method may be viewed as a manufacturing system consisting of four input categories: machine tool, processing tool, work material, and operational factors. The article provides a classification of finishing as a surface generation process and addresses the characteristics of the generated surfaces and the methods used to measure them. It describes the thermomechanical interactions occurring between the processing tool and the work material in the presence of machine tool and operational factors.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007020
EISBN: 978-1-62708-439-0
... and tolerancing; materials, processes, and build parameters; etc.), often delegating that responsibility to CAM software either paired or embedded with the AM equipment. However, they did provide sufficient 3D information to communicate the model as a reference to produce the AM tool path information (e.g...
Abstract
Data formats play an integral role in leveraging the flexibility of additive manufacturing and achieving consistent part quality. This article compares and contrasts data formats optimized for design, materials, processes, and inspection methods. It also discusses the types of data associated with the six phases of additive manufacturing, namely design, build, design with build plan, design with machine-specific build plan, post-processed part, and qualified part.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002191
EISBN: 978-1-62708-188-7
...: Photochemical components offer extremely tight tolerancing—as tight as ±0.025 mm (±0.001 in.) if critically required. Tolerances of ±0.075 mm (±0.003 in.) are easily produced Ductility: The photochemically machined components exhibit excellent ductility, and no further processing is required to remove any...
Abstract
This article discusses the properties of beryllium metals that require special attention when machining. It provides information on the considerations of S65 and selects 65 beryllium materials that are used for conducting tool wear studies and surface damage studies. The article highlights some of the precautions to be followed while machining beryllium metals. Information on the cutting oils, cutting tools, and speeds and feeds used in turning the beryllium are also provided. The article describes the chemical milling and photochemical machining methods that are used for etching beryllium components.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006899
EISBN: 978-1-62708-392-8
... shaped with CAD models that are reconstructed by 3D scanning of the intraoral area or extraoral impression. A gap exists between the mechanical tolerancing standard (e.g., ASME Y-14.5; Ref 37 ) and free-form designs. Industrial standards assign dimensions or tolerances to mechanical designs, most...
Abstract
Additive manufacturing (AM), also referred to as three-dimensional printing or rapid prototyping, is a set of technologies that has rapidly evolved and has drawn much research attention in the manufacturing of high value-added products. This article focuses on dentistry, one of the fields in which AM has gained much traction. It discusses the AM processes used to produce dentures, crowns, and bridges. Digitization techniques, which are the first step and provide the CAD model for AM processes, are presented. Scanning technologies that are widely used in dental manufacturing are presented in detail, and the strengths and weaknesses of each process within their applications are discussed. AM processes are discussed in detail, and the materials that are widely used in AM-embedded dental manufacturing are briefly surveyed. The final section concludes with remarks and a preview of future research and practice directions.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002423
EISBN: 978-1-62708-194-8
... to a detailed and optimized design. These articles introduce concepts for CAD, tolerancing, optimizing, documenting, and prototyping. A common thread between all of these aspects is that the designer requires sets of validated material and processing properties. Again, the materials engineer is an important...
Abstract
This article discusses the various roles and responsibilities of materials engineers in a product realization organization and suggests different ways in which materials engineers may benefit their organization. It also provides a summary of the concepts discussed in the articles under the Section “The Role of the Materials Engineer in Design” in ASM Handbook, Volume 20: Materials Selection and Design.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009020
EISBN: 978-1-62708-187-0
... application of these datum fixture and targeting principles. Drawings and Dimensions The tool that has had the most dramatic positive impact on the manufacture of parts that reliably fit together is geometric dimensioning and tolerancing (GD&T), as defined by ANSI Y14.5M—1994. When compared...
Abstract
Casting offers a great amount of component design flexibility. This article discusses six casting design parameters that drive the geometry of casting design from a process standpoint. It provides information on the design of junctions and addresses considerations of secondary operations in design. The article describes the factors that control casting tolerances and presents specific tips for designing castings with uniform wall thickness, unequal sections, thin sections, economical coring, functional packaging, and core design. The article provides a framework for analyzing all manners of manufacturing as possible conversion candidates for casting. It concludes with a discussion on different metalcasting design projects.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002434
EISBN: 978-1-62708-194-8
... specifications should be more liberally toleranced. Overall, according to Anderson, “The best procedure is to optimize tolerances for a balance of function, quality, safety, and manufacturability” ( Ref 1 ). Minimize the Number of Different but Similar Part Designs In other words, standardize...
Abstract
This article describes how design can unfavorably affect product quality. It provides information on the total quality management philosophy, emphasizing the principles of quality management. The article discusses various methods for evaluating a product design for quality. It presents design guidelines that are intended to provide products with a potential for higher levels of quality.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005847
EISBN: 978-1-62708-167-2
... into account the part manufacturing method and tolerances. With many parts the center at each end would be the most preferable and simplest feature to use to retain the part; however, in many cases the center in the part is used only for manufacturing processes and not a basic toleranced parameter in the part...
Abstract
Scanners are the most versatile and flexible of the equipment available to the heat treating industry for induction hardening. This article provides a general overview of scanners, and describes various critical factors, including scan speeds, rotational speeds, and center total indicator runout of vertical scanners. It presents information on the frequency selection parameters for scanning applications. The article also discusses the critical parameters and production rates in specifying and developing a tooth-by-tooth hardening process.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005535
EISBN: 978-1-62708-197-9
... systems already have the capability to capture features such as geometric dimensioning and tolerancing, surface finish callouts, and nonshape entities right in the 3-D model. In the future, this will undoubtedly be made easier and more common. Another controversial improvement in CAD is the total...
Abstract
Solid modeling is the act of creating the three-dimensional models of various components and system using a computer-aided design (CAD) tool. This article describes the fundamental approaches of solid modeling, such as manufacturing operation simulation, parametric approach, and reference entities. It discusses the application of solid modeling systems to create expressions or variables and various surfaces for components. The use of high-end CAD systems to afford a number of sheet metal functions is reviewed. The article explains the explicit-parametric modeling and model verification for the solid modeling. It provides information on the application of solid modeling in associativity and concurrent engineering, product lifecycle management, and collaborative engineering.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.9781627081948
EISBN: 978-1-62708-194-8
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009014
EISBN: 978-1-62708-187-0
..., and machining. Guidelines for parametric design would include best dimensioning and tolerancing practices, material properties including those relevant to the geometry, material, and process interactions discussed earlier as well as structural properties needed for proper consideration of damage tolerance...
Abstract
This article discusses issues that impact a good casting design. The focus is on the casting design in general, and on sand and permanent mold aluminum casting in particular. The article examines the casting design process from a variety of design and processing perspectives. It summarizes several strategies for improving the traditional casting design process. The article also proposes some possible approaches for implementing these strategies. It presents a vision for the development of comprehensive casting design guidelines along with specific development objectives.
1