1-20 of 1418

Search Results for titanium-aluminum-base alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 December 2004
Fig. 9 Fully lamellar microstructure in titanium-aluminum-base alloy consisting of equiaxed polycrystalline grains and lamellae within the grains. The lamellar structure is composed of a few α 2 plates interspersed between many γ plates. Source: Ref 20 , 21 More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003728
EISBN: 978-1-62708-177-1
... Abstract This article describes the development of heat-resistant titanium-base alloys and their classification into several microstructure categories based on their strengthening mechanisms. It explains the phase transformation in titanium-aluminum-base alloys and two peritectic reactions...
Book Chapter

Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003623
EISBN: 978-1-62708-182-5
.... It also reviews the considerations for selected nonferrous alloy systems such as aluminum, titanium, tantalum, and nickel. corrosion resistance alloy composition shielding molten hot metal surface welding parameter weldments nonferrous alloy system aluminum titanium tantalum nickel...
Book Chapter

Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001379
EISBN: 978-1-62708-173-3
..., copper, and copper alloys. Additional applicable materials include nickel, nickel-base alloys, zirconium, titanium, tantalum, and niobium. aluminum aluminum alloys coextrusion welding cold coextrusion welding copper copper alloys extrusion dies hot coextrusion welding low-carbon steel...
Book Chapter

By Alexander E. Shapiro
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0009239
EISBN: 978-1-62708-173-3
... with other metals ( Ref 12 ). Silver-base filler metals typically used for brazing titanium in vacuum or in air are presented in Table 9 . Sometimes aluminum can be chosen as the main component of the braze alloy, because aluminum has a limited zone of solid solutions with titanium that allows to count...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003814
EISBN: 978-1-62708-183-2
... easily be categorized by elemental base. aluminum copper corrosion resistance nickel nonferrous metals titanium NONFERROUS METALS AND ALLOYS are widely used to resist corrosion. At one end of the spectrum, they are used for water piping and food preparation. At the other end...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
... consist primarily of the titanium aluminides alpha-2 and gamma, as well as the orthorhombic plus beta types of alloys. The aluminides, as shown on the titanium-aluminum phase diagram of Fig. 1 , consist of two alloy families: alpha-2, which is based on the Ti 3 Al intermetallic, and gamma, which is based...
Book Chapter

By Awadh B. Pandey
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003371
EISBN: 978-1-62708-195-5
... typical tensile properties and fracture toughness of the selected heat treatable aluminum alloys in a table. Titanium alloys are very attractive for MMC applications, due to their higher strength and temperature capability compared to aluminum alloys. The article tabulates the effect of heat treatment...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003160
EISBN: 978-1-62708-199-3
... typical of those in copper-aluminum, copper-tin, and copper-zinc alloys. Commercial SMA Alloys Properties of NiTi and Cu-base SMA alloys are quite different. The NiTi alloys have greater shape memory strain (up to 8% versus 4 to 5% for the copper-base alloys), tend to be much more thermally...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
... types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys...
Book Chapter

By G.W. Kuhlman
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004000
EISBN: 978-1-62708-185-6
... alloys are now commercially available based on intermetallic compounds of titanium and aluminum called titanium aluminides. Titanium aluminide alloys are of two major classes: Titanium aluminide(s) based on the compound Ti 3 Al (or α-2, alpha-two), an ordered hcp allotropic form Titanium...
Book Chapter

By Roy I. Batista
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001456
EISBN: 978-1-62708-173-3
... preferable to most of the silver alloys. The Ag-Cu-Li alloys were successful if the brazing cycles were short to prevent excessive erosion of the base metal and to minimize the formation of the brittle Cu-Ti intermetallic. Aluminum alloys, including 3003 and 4043, are also available, if their lower...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001080
EISBN: 978-1-62708-162-7
... was apparent. Commercial titanium production soon began in earnest in the United States, and by 1956 U.S. production of titanium mill products was more than 6 million kg/yr (13 million lb/yr) ( Ref 2 ). Alloy development progressed rapidly. The beneficial effects of aluminum additions were realized...
Book Chapter

By Chester J. Van Tyne, John Walters
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
... the characteristics and processing considerations of each metal. It discusses forging because it is a versatile metalworking process and performed at cold, warm, and hot working temperatures. The article also presents the applications of steels, stainless steels, aluminum alloys, titanium alloys, superalloys...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003164
EISBN: 978-1-62708-199-3
... on either. In many instances, the so-called intermetallic compounds can be used as bases for alloy development to improve or optimize properties for specific applications. Fig. 2 Crystal structures of nickel, iron, and titanium aluminides Nickel Aluminides The nickel-aluminum phase diagram...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003184
EISBN: 978-1-62708-199-3
.... Alloys containing titanium and aluminum can develop nitride and carbonitride segregation, which later appears as stringers in wrought bars and affects forgeability. This type of segregation has been almost completely eliminated through the use of vacuum melting. Therefore, iron-base alloys can be forged...
Book Chapter

By Muneharu Kutsuna
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005620
EISBN: 978-1-62708-174-0
... is faster than 0.6 m/min (2.0 ft/min), zinc is confirmed in the aluminum alloy. When the intermetallic compound layer was less than 10 μm, failure of the specimen occurred at the base metal of the zinc-coated steel in tensile shear test. Steel and Titanium Sheet Joining Fusion welding of steel...
Book Chapter

Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals. thermal conductivity aluminum aluminum alloys copper copper alloys iron iron alloys lead lead alloys magnesium magnesium alloys nickel nickel alloys tin tin alloys titanium titanium...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001453
EISBN: 978-1-62708-173-3
... the elements at the surface Nickel Flashing Certain heat-resistant alloys that are used as base metals in brazed assemblies—particularly nickel-base alloys containing high percentages of aluminum and titanium (such as Inconel 718)—may require a surface pretreatment to ensure maintenance...
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002172
EISBN: 978-1-62708-188-7
... was awarded by the U.S. Air Force to the General Electric Company to provide a data base for the machining of aluminum alloys, titanium alloys, nickel-base superalloys, and steels. These studies were spearheaded by D.G. Flom ( Ref 1 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 ) and R. Komanduri ( Ref 20...