Skip Nav Destination
Close Modal
By
Rajiv Shivpuri, Satish Kini
By
Chester J. Van Tyne, John Walters
By
R.E. Montero, L.G. Housefield, R.S. Mace
By
Sami M. El-Soudani
By
Dick Douglas, Charles V. White, Tim McHenry
By
D.U. Furrer, S.L. Semiatin
By
Prabir K. Chaudhury, Sean R. Agnew
By
V. Samarov, D. Seliverstov, F.H. (Sam) Froes
By
Daniel Eylon, F.H. (Sam) Froes
By
B.P. Bewlay, M.F.X. Gigliotti, C.U. Hardwick, O.A. Kaibyshev, V.A. Valitov ...
Search Results for
titanium hot forging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 675
Search Results for titanium hot forging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Lubricants and Their Applications in Forging
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004032
EISBN: 978-1-62708-185-6
... or polymerbased lubricants and molybdenum disulfide for warm application; graphite suspensions in oil or water for hot forging steels; and glass films for titanium and superalloys hot forgings. The article describes the applications of lubricants in warm extrusion and forging, hot forging of steel, hot forging...
Abstract
This article lists functions of lubricants common to the majority of applications and processes. It discusses the lubricant candidates widely used in forging: conversion coatings with soaps (stearate compounds) and molybdenum disulfide for cold forging; oil-based thick, film oil or polymerbased lubricants and molybdenum disulfide for warm application; graphite suspensions in oil or water for hot forging steels; and glass films for titanium and superalloys hot forgings. The article describes the applications of lubricants in warm extrusion and forging, hot forging of steel, hot forging of aluminum, isothermal and hot die forging, and the extrusion of steel.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004000
EISBN: 978-1-62708-185-6
... °C (1000 °F) or less and moderate strain rates (slow-strain-rate hot-die and isothermal forging of titanium alloys are discussed in depth in the article “Isothermal and Hot-Die Forging” in this Volume). Figure 1 compares the flow stresses of several commonly forged titanium alloys at strain rate...
Abstract
Titanium alloys are forged into a variety of shapes and types of forgings, with a broad range of final part forging design criteria based on the intended end-product application. This article begins with a discussion on the classes of titanium alloys, their forgeability, and factors affecting forgeability. It describes the forging techniques, equipment, and common processing elements associated with titanium alloy forging. The processing elements include the preparation of forging stock, preheating of the stock, die heating, lubrication, forging process, trimming and repair, cleaning, heat treatment, and inspection. The article presents a discussion on titanium alloy precision forgings and concludes with information on the forging of advanced titanium materials and titanium aluminides.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001022
EISBN: 978-1-62708-161-0
... particles in the steel matrix. This article summarizes the metallurgical effects of vanadium, niobium, molybdenum, and titanium. The metallurgical fundamentals were first applied to forgings in the early 1970s. The ultimate strength of first- and second-generation microalloy steels is adequate for many...
Abstract
Two high-strength low-alloy (HSLA) families, acicular-ferrite steels and pearlite-reduced steels, contain microalloying additions of vanadium and niobium. Vanadium, niobium, and titanium combine preferentially with carbon and/or nitrogen to form a fine dispersion of precipitated particles in the steel matrix. This article summarizes the metallurgical effects of vanadium, niobium, molybdenum, and titanium. The metallurgical fundamentals were first applied to forgings in the early 1970s. The ultimate strength of first- and second-generation microalloy steels is adequate for many engineering applications, but these steels do not achieve the toughness of conventional quenched and tempered alloys under normal hot-forging conditions. Third-generation microalloy steels differ from their predecessors in that they are direct quenched from the forging temperature to produce microstructures of lath martensite with uniformly distributed temper carbides. Without subsequent heat treatment, these materials achieve properties, including toughness, similar to those of standard quenched and tempered steels.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
... of the gamma aluminides with particular reference to production scaleable techniques, including vacuum arc and cold-hearth melting, isothermal forging, conventional hot forging, and extrusion. The selection and design of manufacturing methods, in the context of processing-cost trade-offs for gamma titanium...
Abstract
This article reviews the bulk deformation processes for various aluminide and silicide intermetallic alloys with emphasis on the gamma titanium aluminide alloys. It summarizes the understanding of microstructure evolution and fracture behavior during thermomechanical processing of the gamma aluminides with particular reference to production scaleable techniques, including vacuum arc and cold-hearth melting, isothermal forging, conventional hot forging, and extrusion. The selection and design of manufacturing methods, in the context of processing-cost trade-offs for gamma titanium aluminide alloys, are also discussed.
Book Chapter
Warm and Hot Working Applications
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
... the characteristics and processing considerations of each metal. It discusses forging because it is a versatile metalworking process and performed at cold, warm, and hot working temperatures. The article also presents the applications of steels, stainless steels, aluminum alloys, titanium alloys, superalloys...
Abstract
The warm and hot working of metals provide the ability to shape important materials into component shapes that are useful in a variety of applications requiring strength, toughness, and ductility. This article focuses on a variety of metals that can be hot or warm worked, and describes the characteristics and processing considerations of each metal. It discusses forging because it is a versatile metalworking process and performed at cold, warm, and hot working temperatures. The article also presents the applications of steels, stainless steels, aluminum alloys, titanium alloys, superalloys, and copper alloys.
Book Chapter
Isothermal and Hot-Die Forging
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003985
EISBN: 978-1-62708-185-6
... forging requires that the dies be at or near the actual metal temperature (760 to 980 °C, or 1400 to 1800 °F, for titanium alloys and 980 to 1200 °C, or 1800 to 2200 °F, for nickel-base alloys). In hot-die forging, the die temperature is about 110 to 220 °C (200 to 400 °F) below the workpiece temperature...
Abstract
Hot-die forging and isothermal forging are unique forging methods developed to forge materials that are difficult or impossible to forge by conventional means. This article presents a comparative study on hot-die forging and isothermal forging. It discusses forging parameters, process selection considerations, design guidelines, alloy types and selection, and the advantages and disadvantages of hot-die forging and isothermal forging. The article discusses the application of the finite-element analysis modeling to design.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003141
EISBN: 978-1-62708-199-3
..., including all operations that convert ingot into general mill products, such as billet, bar, plate, sheet, strip, tube, and wire. The section on secondary fabrication describes processes such as die forging, extrusion, hot and cold forming, machining, chemical milling, and joining. The article presents...
Abstract
Titanium metal passes through three major steps during processing from ore to finished product: reduction of titanium ore to sponge (porous form), melting of sponge and scrap to form ingot, and remelting and casting into finished shape. This article describes primary fabrication, including all operations that convert ingot into general mill products, such as billet, bar, plate, sheet, strip, tube, and wire. The section on secondary fabrication describes processes such as die forging, extrusion, hot and cold forming, machining, chemical milling, and joining. The article presents a short note on powder metallurgy products of titanium. Casting processes and properties are covered in the final section.
Book Chapter
Forging of Specific Metals and Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003184
EISBN: 978-1-62708-199-3
... and copper alloys, magnesium alloys, and titanium alloys. It provides forging process variables such as stock preparation, heating and cooling of forgings, die lubrication, trimming, and cleaning of these metals and alloys. The article explains the effect of temperature, deformation rate, and die temperature...
Abstract
This article reviews specific processing characteristics and forging-related properties of commonly forged families of metals and alloys, including carbon and alloy steels, stainless steels, heat-resistant alloys (iron, cobalt, and nickel base alloys), aluminum alloys, copper and copper alloys, magnesium alloys, and titanium alloys. It provides forging process variables such as stock preparation, heating and cooling of forgings, die lubrication, trimming, and cleaning of these metals and alloys. The article explains the effect of temperature, deformation rate, and die temperature on forgeability and describes the forging methods of these metals and alloys.
Book Chapter
Properties and Selection of Powder Metallurgy Titanium and Its Alloys
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006095
EISBN: 978-1-62708-175-7
...) Thermomechanical processing for standard mill product (plate, sheet, forgings, and extrusions), such as hot rolling, forging, and extrusion The mechanical properties of PM titanium products also depend on the final product heat treatment, and chemical and/or thermochemical processing, if the latter steps...
Abstract
This article focuses on mechanical testing characterization of blended elemental powder metallurgy (PM) titanium alloys and prealloyed PM titanium alloys. It examines the tensile properties, fracture toughness, stress-corrosion threshold resistance, fatigue strength, crack propagation properties, and processing-microstructure-property relationships of these alloys. The article also reviews five considerations for powder process selection.
Book Chapter
Failures Related to Hot Forming Processes
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Book Chapter
Thermomechanical Processes for Nonferrous Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
... forging operation to achieve a controlled, uniform grain size followed by a hot-warm working step at subsolvus temperatures to increase strength and creep resistance. Figure 3 shows an orientation imaging micrograph of such material. Each grain in the micrograph exhibits retained strain associated...
Abstract
The thermomechanical processing (TMP) of conventional and advanced nickel and titanium-base alloys is aimed at altering or enhancing one or more metallurgical features within the material and component. This article presents a number of examples of the TMP of nickel-base superalloys and titanium alloys. The TMP techniques include retained-strain processing, dual-microstructure processing, and dual-alloy processing. The article also describes the TMP of alpha-beta titanium alloys, including fine-grain processing, hybrid-structure processing, dual-microstructure processing, and dual-alloy processing. It concludes with a discussion on computer simulation of advanced TMP processes.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... limits on temperature for the process, therefore, hot-die forging coupled with finite-element modeling for process design have been utilized. As with nickel-base superalloys, special heat treatments have been developed to provide dual (and graded) microstructures in alpha-beta titanium alloys ( Ref...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001081
EISBN: 978-1-62708-162-7
... Abstract This article discusses the wrought product forms of titanium and titanium-base alloys, which include forgings and the typical mill products with tabulations for various specifications, and compares specifications for pure titanium, titanium alloys for mechanical, physical properties...
Abstract
This article discusses the wrought product forms of titanium and titanium-base alloys, which include forgings and the typical mill products with tabulations for various specifications, and compares specifications for pure titanium, titanium alloys for mechanical, physical properties and chemical properties, including chemical composition, corrosion resistance, and chemical reactivity. The article discusses the effects of alloying elements in titanium alloys, and describes the classes of titanium alloys, namely, alpha alloys, alpha-beta alloys, and beta alloys. It also describes the typical applications of various titanium-base materials, and explains the crystal structure, effect of impurities, and microstructural constituents of titanium alloys. The article provides a brief description on the processing of wrought titanium alloys, including primary fabrication in which ingots are converted into general mill products and secondary fabrication (forging, extrusion, forming, machining, chemical milling and joining) of finished shapes from mill products and the heat treatment of titanium alloys.
Book Chapter
Forging of Magnesium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003998
EISBN: 978-1-62708-185-6
... and finish machined conditions A comparison among the mechanical properties of typical magnesium, high-strength aluminum, and titanium forging alloys is shown in Table 1 . The specific stiffnesses (moduli/density) of the three alloy classes are similar; the specific yield strengths of magnesium...
Abstract
This article discusses the forging processes and equipment and forging practice associated with the forging of magnesium alloys. It describes the workability of magnesium alloys. The article concludes with a discussion on the inspection of magnesium alloy forgings.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006080
EISBN: 978-1-62708-175-7
... Abstract Successful application of forging and hot pressing involves careful consideration of powder preparation and forming process parameters. This article describes the important process features for powder forging and hot pressing, along with specific applications and materials used...
Abstract
Successful application of forging and hot pressing involves careful consideration of powder preparation and forming process parameters. This article describes the important process features for powder forging and hot pressing, along with specific applications and materials used.
Book Chapter
Fabrication of Near-Net Shape Cost-Effective Titanium Components by Use of Prealloyed Powder and Hot Isostatic Pressing
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006140
EISBN: 978-1-62708-175-7
... cost of machining titanium alloys, the near net shape HIP process is highly competitive with forgings. Fig. 9 Complex PM hot isostatic pressed, near net shape housings from Ti-6Al-4V For the selectively net shape parts such as impellers with the nonmachinable precise internal channels...
Abstract
Prealloyed (PA) powder metallurgy is a technique where complex near-net shape titanium aircraft components are fabricated with low buy-to-fly ratios. This article describes the physical principle, mechanism, and simulation and modeling of metal can and hot isostatic pressing (HIP) processes involved in the PA powder metallurgy technique. It discusses the technical problems addressed in shape control and their solutions for understanding the advantages of powder metallurgy HIP.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005567
EISBN: 978-1-62708-174-0
... isostatic pressures associated with the process are favorable to the deformation welding of low-ductility alloys. Forge Welding Forge welding of ferrous materials is accomplished at very high homologous temperatures on the order of 0.8 to 0.9 of the melting temperature, which contrasts with hot...
Abstract
Forge welding is a solid-state joining process in which the workpieces are heated to the welding temperature and then sufficient blows or force are applied to cause permanent deformation and bonding at the faying surfaces. Coextrusion welding is a solid-state process that produces a weld by heating two or more workpieces to the welding temperature and forcing them through an extrusion die. This article illustrates typical joint configurations used for manual and automatic forge welding applications. It provides information on the common metals welded by coextrusion welding, such as low-carbon steel, aluminum, copper, and copper alloys. The article also explains the common coextrusion behaviors.
Book Chapter
Titanium Powder Metallurgy Products
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001083
EISBN: 978-1-62708-162-7
... ); thus, titanium metallurgy just missed being a factor in the Second World War. The difficulty in extracting titanium from ores, its high reactivity in the molten state, its forging complexity, its machining difficulty, and its sensitivity to segregation and inclusions necessitated the development...
Abstract
This article focuses on the mechanical properties, production of titanium powder metallurgy (P/M) compacts, namely, blended elemental (BE) compacts and prealloyed (PA) compacts. It explains the postcompaction treatments of titanium P/M compacts, including heat treatment, and thermochemical processing. The article talks about the applications of titanium P/M products, namely, BE and PA products. It concludes with a short note on the future trends in titanium P/M technology.
Book Chapter
Roll Forming of Axially Symmetric Components
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004010
EISBN: 978-1-62708-185-6
... compares the resulting properties of roll formed and conventionally forged components. aluminum alloy macrostructures microstructures nickel alloy stress rupture tensile strength titanium alloy ROLL FORMING is employed where improvements in net-shape forming capability can be generated...
Abstract
This article describes the roll forming of components of nickel, titanium, and aluminum alloys. The metallurgical characteristics of the roll formed components, such as macrostructures, microstructures, tensile strength, and stress rupture performance, are discussed. The article compares the resulting properties of roll formed and conventionally forged components.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003993
EISBN: 978-1-62708-185-6
... increases in rupture life. Stock for forgings of the iron-base alloys is generally furnished as press-forged squares or hot-rolled rounds, depending on size. As-cast ingots are sometimes used. The inclusion content of the alloys has a significant effect on their forgeability. Alloys containing titanium...
Abstract
This article provides a discussion on forging methods, melting procedures, forging equipment, forging practices, grain refinement, and critical factors considered in forging process. It describes the different types of solid-solution-strengthened and precipitation-strengthened superalloys, namely, iron-nickel superalloys, nickel-base alloys, cobalt-base alloys, and powder alloys. The article discusses the microstructural mechanisms during hot deformation and presents processing maps for various superalloys. It concludes with a discussion on heat treatment of wrought heat-resistant alloy forgings.
1