1-20 of 526 Search Results for

titanium alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.9781627082907
EISBN: 978-1-62708-290-7
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006283
EISBN: 978-1-62708-169-6
... Abstract This article provides a detailed discussion on heat treatment of titanium alloys such as alpha alloys, alpha-beta alloys, and beta and near-beta alloys. Common processes include stress-relief, annealing, solution treating, aging, quenching, and age hardening. It provides information on...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
..., and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006269
EISBN: 978-1-62708-169-6
... Abstract This article describes the nitriding methods of titanium alloys such as plasma nitriding and gas nitriding. It focuses on the interaction of titanium alloys, interaction of titanium with nitrogen, and the interaction of titanium with oxygen, carbon, and hydrogen. The article provides...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006270
EISBN: 978-1-62708-169-6
... Abstract The response of titanium and titanium alloys to heat treatment depends on the composition of the metal, the effects of the alloying elements on the alpha-beta crystal transformation, and the thermomechanical processing utilized during processing of the alloy. This article provides a...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006253
EISBN: 978-1-62708-169-6
... Abstract This article introduces the different types, distinctions, and grades of commercially pure titanium and titanium alloys. It describes three types of alloying elements: alpha stabilizers, beta stabilizers, and neutral additions. The article discusses the basic categories of titanium...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006282
EISBN: 978-1-62708-169-6
... Abstract This article provides an in-depth treatment on the deformation and recrystallization of titanium alloys. It provides information on the predominant mode of plastic deformation that occurs in titanium in terms of the most common crystallographic planes. The article explains the...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
... Abstract Quenching is a widely used technique to strengthen titanium alloys. This article presents the metallurgical and structural background underlying the specific techniques applied in the quenching of various titanium alloys, and the ways to control and reduce residual stresses induced...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006263
EISBN: 978-1-62708-169-6
... Abstract This article provides a detailed discussion on the heat treatment processes for titanium and titanium alloys. These processes are age hardening, solution treatment, aging, and annealing. The article illustrates the characteristics of equilibrium phase diagrams that are important for...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... Abstract This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
... Abstract This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006250
EISBN: 978-1-62708-169-6
... valency, and lattice type. Figure 1 shows the atomic diameters of many of the elements relative to titanium. Substitutional alloying may occur when the diameter ratio is between 0.85 and 1.15. If the size factor is favorable, then the other three factors should be evaluated to determine the probable...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006261
EISBN: 978-1-62708-169-6
... alloy, quenched and also aged. Adapted from Ref 10 . Source: Ref 7 Alloying also affects the strength of Ni 3 Al, as indicated in Fig. 8 . Tantalum, niobium, and titanium are effective solid-solution strengtheners of Ni 3 Al at room temperature, while tungsten and molybdenum are strengtheners...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
... Abstract Cast nickel-base alloys are used extensively in corrosive-media and high-temperature applications. This article briefly reviews the common types of heat treatments of nickel alloy castings: homogenization, stress relieving, in-process annealing, full annealing, solution annealing...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006265
EISBN: 978-1-62708-169-6
... fraction of γ′ precipitates. Solid-solution-strengthened nickel alloys are generally distinguishable from the precipitation-hardening (PH) alloys by their relatively low content of precipitate-forming elements, such as aluminum, titanium, or niobium. There are, of course, some exceptions to this...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006267
EISBN: 978-1-62708-169-6
... (chromium, tungsten, tantalum, titanium, and zirconium) and by higher carbon contents. The solid-solution alloying decreases stacking-fault energy, thereby making the cross slip and climb of glide dislocations more difficult. Carbide precipitation (especially M 23 C 6 carbides) also can be quite effective...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006273
EISBN: 978-1-62708-169-6
... titanium and their alloys is very different compared to iron in terms of the interaction with nitrogen and oxygen. To take advantage of the potential of nitriding for improving tribological performance, care must be taken in relation to the effect on the resulting nitriding behavior ( Table 1 ). Nitrogen...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006252
EISBN: 978-1-62708-169-6
... components is now quite commonly reported ( Ref 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 ). Quenched surface stresses will typically always be compressive because there is no phase transformation to change the unit volume, as in steels or titanium...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006256
EISBN: 978-1-62708-169-6
... uniform forming stock. Dilute alloys that are heat treated in larger quantities are DU-(0.70–0.85)wt%Ti and DU-2wt%Mo. Both are used as cores in kinetic energy penetrators. The ability of these alloys to age harden is related to the fact that titanium and molybdenum have extended solid solubility in...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
...% Cr and the maximum amount of it is in solid solution, the increase in resistivity of high-purity aluminum (2.65 μΩ ⋅ cm at 20 °C) is 0.77 × 4.00 + 0.23 × 0.18 = 3.13 μΩ ⋅ cm. The potent effects on resistivity of chromium, iron, lithium, manganese, titanium, and vanadium are apparent. Table 3...