Skip Nav Destination
Close Modal
By
Gabriele Maria Fortunato, Amedeo Franco Bonatti, Simone Micalizzi, Irene Chiesa, Elisa Batoni ...
By
Caroline A. Murphy, Cesar R. Alcala-Orozco, Alessia Longoni, Tim B. F. Woodfield, Khoon S. Lim
Search Results for
tissue-printing applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 93 Search Results for
tissue-printing applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006860
EISBN: 978-1-62708-392-8
..., showcasing the current state of the art with the ultimate goal for tissue- and organ-printing applications. biomaterials extrusion printing inkjet printing laser-induced forward transfer printing organ-printing applications process simulations tissue-printing applications GREAT PROGRESS has...
Abstract
The use of 3D bioprinting techniques has contributed to the development of novel cellular patterns and constructs in vitro, ex vivo, and even in vivo. There are three main bioprinting techniques: inkjet printing, extrusion printing (also known as bioextrusion), laser-induced forward transfer (LIFT) printing, which is also known as modified LIFT printing, matrix-assisted pulsed-laser evaporation direct write, and laser-based printing (laser-assisted bioprinting, or biological laser printing). This article provides an overview of the LIFT process, including the LIFT process introduction, different implementations, jetting dynamics, printability phase diagrams, and printing process simulations. Additionally, materials involved during LIFT are introduced in terms of bioink materials and energy-absorbing layer materials. Also, the printing of single cells and 2D and 3D constructs is introduced, showcasing the current state of the art with the ultimate goal for tissue- and organ-printing applications.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... used for various applications. Lastly, current challenges in tissue engineering are discussed. biomaterials bioprinting bone tissue engineering 3D printing ORTHOPEDIC TRAUMA was suffered by more than 7 million patients in the United States from 2013 to 2014, and approximately 650,000 bone...
Abstract
Due to its layer-by-layer process, 3D printing enables the formation of complex geometries using multiple materials. Three-dimensional printing for bone tissue engineering is called bioprinting and refers to the use of material-transfer processes for patterning and assembling biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses these two approaches based on the suitable materials for these constructs and the fabrication processes used to manufacture them. The materials are grouped into polymers, metals, and hydrogels. The article also summarizes the commonly used 3D printing techniques for these materials, as well as cell types used for various applications. Lastly, current challenges in tissue engineering are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006892
EISBN: 978-1-62708-392-8
... are printed into a pattern/patterns that correctly represents/represent the targeted tissue. Finally, some other factors, such as cell-cell interaction and cell/delivery-matrix interaction, are also critical in a cellular structure for a specific biomedical application. For example, it is important...
Abstract
Microvalve jetting, with its advantages of low cost, ease of operation, high printing speed, and ability to process living cells with high viability, has been primarily used for fabricating high-throughput drug-screening models, in vitro cellular structures for fundamental cell biology research, and cell-laden structures for regenerating tissues or organs in the human body after disease or trauma. This article provides an overview of microvalve jetting of biomaterials, including operational parameters. The jetting technologies covered are inkjet printing, microvalve jetting, and laser-assisted jetting. The parameters covered include nozzle size (nozzle inner diameter), pneumatic pressure, valve-opening time, and printing speed of microvalve jetting. Subsequently, the article discusses biomaterials for microvalve jetting in terms of biomaterial definition, required properties for a suitable biomaterial, currently used biomaterials, and cells and cellular structures. Additionally, applications of microvalve jetting in biomedical engineering are presented, which include cellular and RNA analysis, high-throughput drug screening, and tissue engineering.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006856
EISBN: 978-1-62708-392-8
... and their printed scaffolds for applications in tissue engineering and regenerative medicines, and provides future research recommendations to address the shortcomings and issues found in current extrusion-based bioprinting processes. extrusion bioprinting tissue engineering tissue scaffolds IN TISSUE...
Abstract
This article begins with a description of extrusion-based bioprinting for tissue scaffold fabrication. It also examines various extrusion-based bioprinting processes and related tissue scaffolding strategies, presents the selection criteria of various bioinks with various polymers and their printed scaffolds for applications in tissue engineering and regenerative medicines, and provides future research recommendations to address the shortcomings and issues found in current extrusion-based bioprinting processes.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006893
EISBN: 978-1-62708-392-8
... the cranial defects ( Fig. 13 ). Another group reported the printing of the carrier matrix Matriderm ® with fibroblasts and keratinocytes in a layer-by-layer fashion up to 20 layers for each cell type for application in skin tissue engineering. The bioprinted scaffold was studied for application in in vitro...
Abstract
This article focuses on the pneumatic extrusion-based system for biomaterials. It provides an overview of additive manufacturing (AM) processes, followed by sections covering steps and major approaches for the 3D bioprinting process. Then, the article discusses the types, processes, advantages, limitations, and applications of AM technology and extrusion-based approaches. Next, it provides information on the research on extrusion-based printing. Finally, the article provides a comparison of the extrusion-based approach with other approaches.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006894
EISBN: 978-1-62708-392-8
... extensively used in tissue engineering applications and therefore are often used as bioinks for bioprinting, due to their chemical tunability and biocompatibility ( Ref 52 – 54 ). Furthermore, several printing parameters can be adapted to the gelation kinetics of the hydrogels to tune their final structural...
Abstract
This article discusses the state of the art in the 3D bioprinting field. It examines the printability of protein-based biopolymers and provides key printing parameters, along with a brief description of the main current 3D bioprinting approaches. The article presents some studies investigating 3D bioprinting of naturally derived proteins for the production of structurally and functionally biomimetic scaffolds, which create a microenvironment for cells resembling that of the native tissues. It describes key structural proteins processed in the form of hydrogels, such as collagen, silk, fibrin, and others such as elastin, decellularized matrix, and Matrigel (Corning), which are used as biomaterials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006855
EISBN: 978-1-62708-392-8
... a linear response ( Ref 40 ). These findings enable the possibility for future applications in brain and nerve tissue engineering ( Ref 41 ), including 3D printing as a suitable fabrication process ( Ref 40 ). In addition to brain tissue, other soft tissue types have been investigated as an application...
Abstract
This article discusses alginate/gelatin-based bioinks in 3D bioprinting applications, providing a summary of the most relevant previous work in the field. It presents advanced compositions to enhance functionality and/or optimize hydrogels for 3D bioprinting. The article discusses advanced printing techniques for alginate/gelatin-based bioinks.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006858
EISBN: 978-1-62708-392-8
... the way up to printing of microorganoids and organs. Bioprinting has positively impacted a plethora of applications in the field of biomedicine, which has helped fields such as regenerative medicine, disease modeling, tissue engineering, pharmaceutics, drug delivery, and food production ( Ref 1 – 5...
Abstract
Three-dimensional plotting of biomaterials (also known as bioprinting) has been a major milestone for scientists and engineers working in nanobiotechnology, nanoscience, and nanomedicine. It is typically classified into two major categories, depending on the plotting principle, as contact and noncontact techniques. This article focuses on the working principles of contact and noncontact printing methods along with their advantages, disadvantages, applications, and challenges. Contact printing methods include micro-plotter, pen printing, screen printing, nanoimprint printing, flexography printing, and gravure printing. Noncontact printing methods include extrusion printing, droplet printing, laser-based polymerization, and laser-based cell transfer. The wide variety of printable biomaterials, such as DNA, peptides, proteins, lipids, and cells, also are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006861
EISBN: 978-1-62708-392-8
...- and ZnO-doped TCP, yttria-stabilized zirconia, and alumina bioceramics were binder jet printed for different bone tissue engineering applications. Table 2 summarizes the biomaterial-binder combinations, postprocessing strategies, and key applications of 3D binder jetting in the fabrication of design...
Abstract
Inkjet printing is extremely precise in terms of the ejected microdroplets (picoliter volume), contributing an unparalleled lateral resolution. Additionally, the benefits of high-speed deposition, contactless ink delivery, and the use of a range of ink materials endorse this technique as suitable for high-throughput 3D manufacturing. This article provides an overview of inkjet 3D printing (also referred to as 3D inkjetting). It then highlights the major components and accessories used in commercial and laboratory-based 3D inkjet printers. Next, the article describes the process physics of the transient phenomena involved in both binder-jetting- and direct-inkjetting-based 3D printing. It then discusses the scope and advantages of 3D inkjetting in the manufacturing of metallic, ceramic, and polymer-based biomaterials. The article also discusses several approaches and methodologies to examine the in vitro cytocompatibility and in vivo biocompatibility of both binder-jetted and direct-inkjetted scaffolds for biomedical applications. Finally, it discusses the challenges and troubleshooting methodologies in 3D inkjetting of biomaterials.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006890
EISBN: 978-1-62708-392-8
.... A scaffold is a three-dimensional (3D) structure capable of supporting cell adhesion, maturation, and proliferation, allowing the regeneration in vitro of functional tissues and organs, especially for regenerative medicine applications, among others ( Ref 1 ). Bioprinting allows the controlled, layer...
Abstract
Bioprinting has been advancing in the field of tissue engineering as the process for fabricating scaffolds, making use of additive manufacturing technologies. In situ bioprinting (also termed intraoperative bioprinting) is a promising solution to address the limitations of conventional bioprinting approaches. This article discusses the main approaches and technologies for in situ bioprinting. It provides a brief overview of the bioprinting pipeline, highlighting possible solutions to improve currently used approaches. Additionally, case studies of in situ bioprinting are provided and in situ bioprinting future perspectives are discussed.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006882
EISBN: 978-1-62708-392-8
... tissue models ( Ref 68 ). Although huge advancements have been made in the use of vat polymerization for tissue engineering applications, a major challenge lies in developing soft bioresins for cell encapsulation that can withstand the printing conditions ( Ref 71 ). The development of bioresins...
Abstract
Vat polymerization is a form of three-dimensional (3D) printing. Historically, it is the oldest additive manufacturing technique, with the development of stereolithography apparatus (SLA) by Charles Hull in 1986. This article outlines the various forms of vat polymerization techniques used for biomedical applications. Due to the complex nature of this printing process, many key print parameters and material properties need to be considered to ensure a successful print. These influential parameters are addressed throughout the article to inform the reader of the considerations that should be taken when using the vat polymerization technique. The article provides information on vat polymerization printer setup, the photo-cross-linking mechanism, and considerations using vat polymerization. In addition, it outlines and discusses the advancements of vat polymerization in the biomedical industry.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006886
EISBN: 978-1-62708-392-8
... phosphates ( Ref 3 , 42 , 55 – 58 ). The coupling of HA and SLS is an effective approach in producing porous structures for bone tissue scaffold applications; patient-tailored medical devices can be printed with high dimensional accuracy and enhanced biocompatibility. Processing HA via SLS, either...
Abstract
Hydroxyapatite (HA) is one of the most popular materials in tissue scaffold engineering due to its similarity to the nature of human bone; it accounts for more than half of the total weight of the latter. Selective laser sintering (SLS) is an additive manufacturing method that is used in producing tissue engineering parts from HA feedstocks. This article provides a brief overview of the process itself, along with a detailed review of HA-based tissue engineering applications using SLS. Discussion on the various polymer composites is presented. A detailed overview of selected publications on HA-based SLS studies is listed, which provides insight regarding technical aspects of processing HA powder feedstocks.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006891
EISBN: 978-1-62708-392-8
... ), 2006 , 3580 – 3588 13. Xu T. , Binder K.W. , Albanna M.Z. , Dice D. , Zhao W. , Yoo J.J. , and Atala A. , Hybrid Printing of Mechanically and Biologically Improved Constructs for Cartilage Tissue Engineering Applications , Biofabrication , Vol 5 ( No. 1...
Abstract
Piezoelectric jetting is a common form of additive manufacturing technology. With the development of material science and manufacturing devices, piezoelectric jetting of biomaterials has been applied to various fields including biosensors, tissue engineering, deoxyribonucleic acid (DNA) synthesis, and biorobots. This article discusses the processes involved in piezoelectric jetting of biosensors and biorobots and the applications of piezoelectric jetting for tissue engineering and producing DNA. In addition, it reviews the challenges and perspectives of piezoelectric jetting.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Image
Published: 12 September 2022
Fig. 23 (a–e) Application of preset extrusion bioprinting for various cross-sectional tissue structures (spinal cord, hepatic lobule, capillaries, and blood vessel) and the letter “S.” Three-dimensional (3D) computer-aided design modeling of cross-sectional tissue structures and photography
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
...” Biodegradability Biodegradability is a desirable property of many drug-delivery devices and tissue engineering scaffolds. For drug-delivery applications, using a biodegradable device enables diffusion of an encapsulated drug over a predictable drug-release profile. For tissue engineering scaffolds...
Abstract
Powder-bed fusion (PBF) is a group of additive manufacturing (AM) processes that includes selective laser sintering, selective laser melting, and electron beam melting. This article explains the processes and parameters of PBF systems that are used for biomedical applications. It also presents the desirable properties of biomedical devices and the advantages of using PBF systems for biomedical applications.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006902
EISBN: 978-1-62708-392-8
... of the operation ( Ref 13 ). Fig. 2 3D printed templates, (a) external soft tissue, and (b) internal bone. Source: Ref 13. (c) Directly printed silicone nasal prosthesis. Source: Ref 14. One of the medical applications of AM is direct/indirect production of prostheses ( Ref 15 ). Unkovskiy et al...
Abstract
Additive manufacturing (AM), or three-dimensional (3D) printing, is a class of manufacturing processes that create the desired geometries of an object, or an assembly of objects, layer by layer or volumetrically. AM has been used extensively for manufacturing medical devices, due to its versatility to satisfy the specific needs of an intended medical field for the product/device. This article provides a comprehensive review of AM in medical devices by the medical specialty panels of the Food and Drug Administration (FDA) Code of Federal Regulations, Parts 862 to 892, including anesthesiology, ear and nose, general hospital, ophthalmic, plastic surgery, radiology, cardiovascular, orthopedic, dental, neurology, gynecology, obstetrics, physical medicine, urology, toxicology, and pathology. It is classified under these panels, and critical reviews and future outlooks are provided. The application of AM to fabricate medical devices in each panel is reviewed; lastly, a comparison is provided to reveal relevant gaps in each medical field.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006863
EISBN: 978-1-62708-392-8
..., and the regulatory challenges of vat polymerization-based bioprinting are presented. bioprinting medical applications vat polymerization ADDITIVE MANUFACTURING (or three-dimensional, or 3D, printing) as a process has attracted people’s attention from all over the world in recent years ( Ref 1 – 4...
Abstract
Of the seven additive manufacturing (AM) processes, this article focuses on the vat photopolymerization, or simply vat polymerization, process, while briefly discussing the other six AM processes. Vat polymerization and its characteristics, AM applications in medical fields, and the regulatory challenges of vat polymerization-based bioprinting are presented.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006906
EISBN: 978-1-62708-392-8
... or spinal cord tissue. In one study involving placement of spinal thoracolumbar screws, it was found that the 3D-printed drill guide had advantages over the traditional, free-hand technique ( Ref 86 ). Fig. 5 (a) Trajectory, diameter, and length of pedicle screws planned using Avizo software. (b...
Abstract
Additive manufacturing (AM), or three-dimensional printing, has ushered in an era of mass customization in the many different industries in which it is used. The use of the personalized surgical instrument (PSI) is no exception. Initially, PSIs were not a result of the use of AM; rather, what occurred is an improvement in their methods of manufacturing. This article discusses the fundamentals, benefits, manufacturing, and other application examples beyond orthopedics of PSIs. In addition, an outlook of AM in biomedical applications is also covered.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006565
EISBN: 978-1-62708-290-7
... microstructures in additive manufacturing. 3D printing laser-induced forward transfer LASER-INDUCED FORWARD TRANSFER (LIFT) is a digital direct-write printing technique with many applications in additive micromanufacturing, ranging from printed electronics to tissue engineering. Laser-induced forward...
Abstract
This article discusses the basic operating principles, industrial applications, and advantages as well as the parameters influencing the process of laser-induced forward transfer (LIFT) of solid materials, liquid materials, laser-absorbing layers, intact structures, and metallic 3D microstructures in additive manufacturing.
1