Skip Nav Destination
Close Modal
By
Gabriele Maria Fortunato, Amedeo Franco Bonatti, Simone Micalizzi, Irene Chiesa, Elisa Batoni ...
By
Caroline A. Murphy, Cesar R. Alcala-Orozco, Alessia Longoni, Tim B. F. Woodfield, Khoon S. Lim
Search Results for
tissue scaffolds
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 65 Search Results for
tissue scaffolds
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006856
EISBN: 978-1-62708-392-8
... Abstract This article begins with a description of extrusion-based bioprinting for tissue scaffold fabrication. It also examines various extrusion-based bioprinting processes and related tissue scaffolding strategies, presents the selection criteria of various bioinks with various polymers...
Abstract
This article begins with a description of extrusion-based bioprinting for tissue scaffold fabrication. It also examines various extrusion-based bioprinting processes and related tissue scaffolding strategies, presents the selection criteria of various bioinks with various polymers and their printed scaffolds for applications in tissue engineering and regenerative medicines, and provides future research recommendations to address the shortcomings and issues found in current extrusion-based bioprinting processes.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006886
EISBN: 978-1-62708-392-8
... Abstract Hydroxyapatite (HA) is one of the most popular materials in tissue scaffold engineering due to its similarity to the nature of human bone; it accounts for more than half of the total weight of the latter. Selective laser sintering (SLS) is an additive manufacturing method that is used...
Abstract
Hydroxyapatite (HA) is one of the most popular materials in tissue scaffold engineering due to its similarity to the nature of human bone; it accounts for more than half of the total weight of the latter. Selective laser sintering (SLS) is an additive manufacturing method that is used in producing tissue engineering parts from HA feedstocks. This article provides a brief overview of the process itself, along with a detailed review of HA-based tissue engineering applications using SLS. Discussion on the various polymer composites is presented. A detailed overview of selected publications on HA-based SLS studies is listed, which provides insight regarding technical aspects of processing HA powder feedstocks.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006890
EISBN: 978-1-62708-392-8
... Abstract Bioprinting has been advancing in the field of tissue engineering as the process for fabricating scaffolds, making use of additive manufacturing technologies. In situ bioprinting (also termed intraoperative bioprinting) is a promising solution to address the limitations of conventional...
Abstract
Bioprinting has been advancing in the field of tissue engineering as the process for fabricating scaffolds, making use of additive manufacturing technologies. In situ bioprinting (also termed intraoperative bioprinting) is a promising solution to address the limitations of conventional bioprinting approaches. This article discusses the main approaches and technologies for in situ bioprinting. It provides a brief overview of the bioprinting pipeline, highlighting possible solutions to improve currently used approaches. Additionally, case studies of in situ bioprinting are provided and in situ bioprinting future perspectives are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... into cartilaginous and osteoblastic progenitors. Osteoconduction is the process in which grafts serve as the scaffold, guiding osteoblasts and other cells from the host tissue along the networks. With the properties of osteogenesis, osteoinduction, and osteoconduction, the bone graft is capable of healing defects...
Abstract
Due to its layer-by-layer process, 3D printing enables the formation of complex geometries using multiple materials. Three-dimensional printing for bone tissue engineering is called bioprinting and refers to the use of material-transfer processes for patterning and assembling biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses these two approaches based on the suitable materials for these constructs and the fabrication processes used to manufacture them. The materials are grouped into polymers, metals, and hydrogels. The article also summarizes the commonly used 3D printing techniques for these materials, as well as cell types used for various applications. Lastly, current challenges in tissue engineering are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006894
EISBN: 978-1-62708-392-8
... investigating 3D bioprinting of naturally derived proteins for the production of structurally and functionally biomimetic scaffolds, which create a microenvironment for cells resembling that of the native tissues. It describes key structural proteins processed in the form of hydrogels, such as collagen, silk...
Abstract
This article discusses the state of the art in the 3D bioprinting field. It examines the printability of protein-based biopolymers and provides key printing parameters, along with a brief description of the main current 3D bioprinting approaches. The article presents some studies investigating 3D bioprinting of naturally derived proteins for the production of structurally and functionally biomimetic scaffolds, which create a microenvironment for cells resembling that of the native tissues. It describes key structural proteins processed in the form of hydrogels, such as collagen, silk, fibrin, and others such as elastin, decellularized matrix, and Matrigel (Corning), which are used as biomaterials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
...” Biodegradability Biodegradability is a desirable property of many drug-delivery devices and tissue engineering scaffolds. For drug-delivery applications, using a biodegradable device enables diffusion of an encapsulated drug over a predictable drug-release profile. For tissue engineering scaffolds...
Abstract
Powder-bed fusion (PBF) is a group of additive manufacturing (AM) processes that includes selective laser sintering, selective laser melting, and electron beam melting. This article explains the processes and parameters of PBF systems that are used for biomedical applications. It also presents the desirable properties of biomedical devices and the advantages of using PBF systems for biomedical applications.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006887
EISBN: 978-1-62708-392-8
...) 12 coordinates. Color tones on lattice surfaces indicate inner stress concentrations. Scaffold Modulation Autogenous tissue transplantation is commonly performed in orthopedic surgery. Bone regeneration can be effectively promoted to compensate for tissue defects. Artificial bones...
Abstract
Stereolithographic (STL) additive manufacturing (AM) can be used to fabricate practical components. This article discusses the processes involved in STL-AM of biological scaffolds, providing information on bioscaffold processing, cavity arrangements, and microlattice distributions. Within the last topic, the sub-topic of scaffold modulation is discussed.
Image
Published: 12 September 2022
Fig. 3 Schematic diagrams of (a) binder jet printing and (b) piezoelectric direct inkjetting in the manufacturing of bone tissue engineered scaffolds and soft tissue engineered prevasculated scaffolds. (a) Reprinted from Ref 1 with permission. Copyright © 2019 American Chemical Society. (b
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006893
EISBN: 978-1-62708-392-8
... used bioprinting for tissue engineering to develop highly customized cell-laden scaffolds to enable healthy human tissue to be regrown from a patient’s stem cells. Different bioprinted organs are illustrated in Fig. 2 – 6 . Fig. 2 Bioprinted skin construct includes 20 layers of keratinocytes...
Abstract
This article focuses on the pneumatic extrusion-based system for biomaterials. It provides an overview of additive manufacturing (AM) processes, followed by sections covering steps and major approaches for the 3D bioprinting process. Then, the article discusses the types, processes, advantages, limitations, and applications of AM technology and extrusion-based approaches. Next, it provides information on the research on extrusion-based printing. Finally, the article provides a comparison of the extrusion-based approach with other approaches.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006861
EISBN: 978-1-62708-392-8
... 3D body. These steps repeat until the architecture is completely built. A schematic representation of the process is depicted in Fig. 3(a) . Fig. 3 Schematic diagrams of (a) binder jet printing and (b) piezoelectric direct inkjetting in the manufacturing of bone tissue engineered scaffolds...
Abstract
Inkjet printing is extremely precise in terms of the ejected microdroplets (picoliter volume), contributing an unparalleled lateral resolution. Additionally, the benefits of high-speed deposition, contactless ink delivery, and the use of a range of ink materials endorse this technique as suitable for high-throughput 3D manufacturing. This article provides an overview of inkjet 3D printing (also referred to as 3D inkjetting). It then highlights the major components and accessories used in commercial and laboratory-based 3D inkjet printers. Next, the article describes the process physics of the transient phenomena involved in both binder-jetting- and direct-inkjetting-based 3D printing. It then discusses the scope and advantages of 3D inkjetting in the manufacturing of metallic, ceramic, and polymer-based biomaterials. The article also discusses several approaches and methodologies to examine the in vitro cytocompatibility and in vivo biocompatibility of both binder-jetted and direct-inkjetted scaffolds for biomedical applications. Finally, it discusses the challenges and troubleshooting methodologies in 3D inkjetting of biomaterials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006855
EISBN: 978-1-62708-392-8
... in tissue engineering is the possibility to use 3D printing as a technique for scaffold fabrication. Because hydrogels provide a beneficial environment for cells due to their similarity to the mammalian ECM, cells can be incorporated prior to printing; thus, hydrogels, laden with cells, form bioinks...
Abstract
This article discusses alginate/gelatin-based bioinks in 3D bioprinting applications, providing a summary of the most relevant previous work in the field. It presents advanced compositions to enhance functionality and/or optimize hydrogels for 3D bioprinting. The article discusses advanced printing techniques for alginate/gelatin-based bioinks.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006858
EISBN: 978-1-62708-392-8
..., and tissue formation. Successful in vitro conditioning of the desired cell types plays a key role in achieving the final vascularized tissue, metastatic models, multicellular tissues, or scaffolds for high-throughput drug screening. Figure 1 depicts the overall process flow involved in the majority...
Abstract
Three-dimensional plotting of biomaterials (also known as bioprinting) has been a major milestone for scientists and engineers working in nanobiotechnology, nanoscience, and nanomedicine. It is typically classified into two major categories, depending on the plotting principle, as contact and noncontact techniques. This article focuses on the working principles of contact and noncontact printing methods along with their advantages, disadvantages, applications, and challenges. Contact printing methods include micro-plotter, pen printing, screen printing, nanoimprint printing, flexography printing, and gravure printing. Noncontact printing methods include extrusion printing, droplet printing, laser-based polymerization, and laser-based cell transfer. The wide variety of printable biomaterials, such as DNA, peptides, proteins, lipids, and cells, also are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006903
EISBN: 978-1-62708-392-8
..., are the most preferred ceramics applied to manufacture orthopedic and dental implants because of their compositional similarities with human bone tissues, superior bioactivity, and bioresorbability in vivo. With the advent of 3D printing technology, calcium phosphate scaffolds with designed porosity provide...
Abstract
Additive manufacturing (AM) technologies print three-dimensional (3D) parts through layer-by-layer deposition based on the digital input provided by a computer-aided design file. This article focuses on the binder jet printing process, common biomaterials used in this AM technique, and the clinical applications relevant to these systems. It reviews the challenges and future directions of binder-jetting-based 3D printing.
Image
in Binder Jet Additive Manufacturing of Biomaterials
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
) in a physiological buffer (pH 7.4) and acidic acetate buffer (pH 5.0). PD, polydopamine. (f) Histological images of TCP, TCP + PD2, and CQE L . Black: TCP scaffold; red: bone; brown: soft tissue/marrow. (e–f) Reprinted from Ref 84 with permission from Elsevier
More
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006882
EISBN: 978-1-62708-392-8
... of this technology include ear and dental implants; however, many other applications such as scaffolds for tissue engineering applications are being extensively researched. Biomedical Applications for Hearing The hearing aid industry is a primary example of how vat polymerization has revolutionized its...
Abstract
Vat polymerization is a form of three-dimensional (3D) printing. Historically, it is the oldest additive manufacturing technique, with the development of stereolithography apparatus (SLA) by Charles Hull in 1986. This article outlines the various forms of vat polymerization techniques used for biomedical applications. Due to the complex nature of this printing process, many key print parameters and material properties need to be considered to ensure a successful print. These influential parameters are addressed throughout the article to inform the reader of the considerations that should be taken when using the vat polymerization technique. The article provides information on vat polymerization printer setup, the photo-cross-linking mechanism, and considerations using vat polymerization. In addition, it outlines and discusses the advancements of vat polymerization in the biomedical industry.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006857
EISBN: 978-1-62708-392-8
... research in using these techniques for tissue engineering due to the rapid prototyping and design freedom they provide ( Ref 1 – 4 ). For example, tissue scaffolds for cardiac and bone have been fabricated successfully ( Ref 5 , 6 ). Polymers used to lead the applications for AM, but in recent years...
Abstract
Additive manufacturing (AM), or three-dimensional (3D) printing, has been widely used for biomedical devices due to its higher freedom of design and its capability for mass customization. Additive manufacturing can be broadly classified into seven categories: binder jetting, directed energy deposition (DED), material extrusion, material jetting, powder-bed fusion (PBF), sheet lamination, and vat photopolymerization. Due to their capability for manufacturing high-quality parts that are fully dense, PBF and DED are the most widely used groups of AM techniques in processing metals directly. In this article, the processing of titanium and its alloys by PBF and DED is described, with a specific focus on their use in biomedical devices. The article then covers the density and mechanical properties of both commercially pure titanium and titanium-aluminum-vanadium alloy. Lastly, the challenges and potential of using new titanium-base materials are discussed.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
... they are implanted in nonosseous tissue ( Ref 12 ). Bioceramics can be manufactured as porous matrices used as scaffolds, in dense bulk forms, or granules as fillers or as coatings. Table 1 shows the types of interactions between bioceramics and host tissue. Type of bioceramic-tissue attachment Table...
Abstract
Ceramics are used widely in a number of different clinical applications in the human body. This article provides a brief history of the bioceramics field and discusses the classification of bioceramics. These include bioinert ceramics, bioactive ceramics, and bioresorbable ceramics. The article describes third-generation bioceramics, classified by Hench and Polak, such as silicate-substituted hydroxyapatite and bone morphogenic protein-carrying calcium phosphate coatings. It reviews several examination methods used to test the biocompatibility of ceramics, namely, biosafety testing, biofunctionality testing, bioactivity testing, and bioresorbability testing.
Image
Published: 12 September 2022
Fig. 11 Three-dimensional binder-jet-printed tricalcium phosphate scaffolds were implanted in a rodent distal femur. (a) Schematics of the implantation site and the surgical procedure. (b) Tissue implant specimens were decalcified, followed by hematoxylin and eosin staining, and observed under
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006891
EISBN: 978-1-62708-392-8
... to form artificial organizations. Biological scaffolds are important for tissue engineering and are widely used for clinical treatments. Raw materials, such as cellulose, collagen, and polylactide-glycolic acid copolymer, have been used to print scaffolds. In addition, cells can be “gifted...
Abstract
Piezoelectric jetting is a common form of additive manufacturing technology. With the development of material science and manufacturing devices, piezoelectric jetting of biomaterials has been applied to various fields including biosensors, tissue engineering, deoxyribonucleic acid (DNA) synthesis, and biorobots. This article discusses the processes involved in piezoelectric jetting of biosensors and biorobots and the applications of piezoelectric jetting for tissue engineering and producing DNA. In addition, it reviews the challenges and perspectives of piezoelectric jetting.
1