1-20 of 110 Search Results for

tissue compatibility

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... responses to the biomaterial. It discusses the testing methods of implant failure, such as in vitro and in vivo assessment of tissue compatibility. biomaterials biomedical devices cardiovascular applications ceramic implants dental applications functionally-graded hip implant implant failure...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006853
EISBN: 978-1-62708-392-8
... properties, manufacturing processes, and the particular surface modifications and treatments that have rendered its surfaces biologically compatible with peri-implant soft and hard tissues. aesthetics biocompatibility dental implants zirconia TOOTH REPLACEMENT, and the search for viable options...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... or replacement of musculoskeletal hard connective tissues. Their use depends on achieving a stable attachment to connective tissue. Carbon-base ceramics are also used for replacement heart valves, where resistance to blood clotting (blood compatibility) and mechanical fatigue are essential characteristics...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004205
EISBN: 978-1-62708-184-9
... It is almost universally true that metallic materials that are considered to be biocompatible or suitable for use in human implantation or tissue-contact device use derive their compatibility from the fact that they have a nonporous stable passive film on the surface that minimizes the diffusion of metal ions...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
.... biocompatibility ceramics medical implants metals nonresorbable polymers polymers resorbable polymers ultrahigh-molecular-weight polyethylene IDEALLY, THE DESIGN AND MATERIALS of which an implant is fabricated should accomplish the defined clinical objective. The local tissue response should produce...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
..., the products of corrosion may accumulate in adjacent tissues; ionic species released may participate in metabolic processes as a substituent for the normal metallic ions in the processes and may affect the overall function of the device in its intended environment. Organometallic species may be formed...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006893
EISBN: 978-1-62708-392-8
... bioprinting to build tissue structures with sufficient mechanical properties ( Ref 40 - 42 ). In addition, coaxial and multimaterial bioprinting is also compatible with extrusion-based bioprinting ( Ref 43 ). Extrusion-based methods are popular because of their simplicity, diversity, and predictability...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006891
EISBN: 978-1-62708-392-8
... Abstract Piezoelectric jetting is a common form of additive manufacturing technology. With the development of material science and manufacturing devices, piezoelectric jetting of biomaterials has been applied to various fields including biosensors, tissue engineering, deoxyribonucleic acid (DNA...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006856
EISBN: 978-1-62708-392-8
... for Cartilage Tissue Engineering , J. Tissue Eng. Regen. Med. , Vol 9 ( No. 11 ), 2015 , p 1286 – 1297 10.1002/term.1682 94. Li S. et al. , Direct Fabrication of a Hybrid Cell/Hydrogel Construct by a Double-Nozzle Assembling Technology , J. Bioactive Compat. Polym. , Vol 24 ( No. 3...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... of the appropriate implants and operation technique, not only the type of fracture and its location but also the condition of the soft tissue, the structure and consistency of the bone, the age and condition of the patient, and any present complication must be considered. Even when the best possible reconstruction...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... Abstract Due to its layer-by-layer process, 3D printing enables the formation of complex geometries using multiple materials. Three-dimensional printing for bone tissue engineering is called bioprinting and refers to the use of material-transfer processes for patterning and assembling...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006894
EISBN: 978-1-62708-392-8
... investigating 3D bioprinting of naturally derived proteins for the production of structurally and functionally biomimetic scaffolds, which create a microenvironment for cells resembling that of the native tissues. It describes key structural proteins processed in the form of hydrogels, such as collagen, silk...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006890
EISBN: 978-1-62708-392-8
... Abstract Bioprinting has been advancing in the field of tissue engineering as the process for fabricating scaffolds, making use of additive manufacturing technologies. In situ bioprinting (also termed intraoperative bioprinting) is a promising solution to address the limitations of conventional...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006855
EISBN: 978-1-62708-392-8
... to rapidly gelate under the influence of divalent cations (such as Ca 2+ , Ba 2+ , or Sr 2+ ) ( Ref 5 ) allow it to be frequently used as hydrogel for tissue engineering applications, particularly in cell encapsulation and biofabrication techniques ( Ref 2 , 6 ). However, alginate degrades in a rather slow...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006904
EISBN: 978-1-62708-392-8
... Abstract The field of bioprinting is a subset of additive manufacturing (AM) that is rapidly expanding to meet the needs of regenerative medicine and tissue engineering. Bioprinting encompasses a broad spectrum of issues, from cell expansion and novel bioink development to cell/stem cell...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... by the process, PBF is especially suited to low-volume manufacturing or industries in which changes in product design are frequent and customized designs are required. Biomedical devices include a wide range of products that are used to treat, diagnose, replace, augment, or restore the function of body tissue...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006858
EISBN: 978-1-62708-392-8
..., patient-derived stem cells (PDSCs). Especially in cases of transplants and disease modeling, the use of PDSCs helps increase the efficacy and compatibility during grafting of the tissues cultured in such in vitro conditions ( Ref 6 ). Preplotting—Computer-Aided Design The next step in the process...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006887
EISBN: 978-1-62708-392-8
... techniques such as selective laser sintering, binder jet printing, and direct ink writing ( Ref 5 - 7 ). Biological materials with organic or inorganic constituents have been selected and used. Geometric distributions should be modulated according to individual osseous tissues ( Ref 8 ). Bioscaffold...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006882
EISBN: 978-1-62708-392-8
..., and tools for preoperative planning and surgical implants. Given that these materials will be in contact with human tissue and likely for prolonged periods, biocompatible resin needs to be subjected to cytotoxicity testing and delayed hypersensitivity before commercial use ( Ref 34 ). The biocompatible...