Skip Nav Destination
Close Modal
By
A. Rabinkin
By
R. Gene Stout
By
Thomas W. Pelletiers, II, Wayne K. Daye
By
Stavros G. Fountoulakis
Search Results for
tin-base alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 892
Search Results for tin-base alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Materials for Sliding Bearings
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003167
EISBN: 978-1-62708-199-3
... and composition of the following types of bearing materials: tin-base alloys, lead-base alloys, copper-base alloys, and aluminum-base alloys. It also briefly discusses the following types of bearing materials: zinc-base alloys, silver-base alloys, gray cast irons, cemented carbides, and nonmetallic bearing...
Abstract
A sliding bearing (plain bearing) is a machine element designed to transmit loads or reaction forces to a shaft that rotates relative to the bearing. This article explains the role of wear damage mechanisms in the design and selection of bearing materials, and its relationship with bearing material properties. Sliding bearings are commonly classified by terms that describe their application; they also are classified according to material construction, as single-metal, bimetal, or trimetal sliding bearings. The article further provides detailed tabular data on the designation and composition of the following types of bearing materials: tin-base alloys, lead-base alloys, copper-base alloys, and aluminum-base alloys. It also briefly discusses the following types of bearing materials: zinc-base alloys, silver-base alloys, gray cast irons, cemented carbides, and nonmetallic bearing materials.
Book Chapter
Friction and Wear of Sliding Bearing Materials
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006412
EISBN: 978-1-62708-192-4
..., bimetal systems, and trimetal systems. The article describes the designations, nominal compositions, mechanical properties, and applications of various sliding bearing alloys: tin-base alloys, lead-base alloys, copper-base alloys, aluminum-base alloys, silver-base alloys, zinc-base alloys, additional...
Abstract
A sliding bearing (plain bearing) is a machine element designed to transmit loads or reaction forces to a shaft that rotates relative to the bearing. This article discusses the properties of bearing materials. It provides information on bearing material systems: single-metal systems, bimetal systems, and trimetal systems. The article describes the designations, nominal compositions, mechanical properties, and applications of various sliding bearing alloys: tin-base alloys, lead-base alloys, copper-base alloys, aluminum-base alloys, silver-base alloys, zinc-base alloys, additional metallic materials, nonmetallic materials. It describes casting processes, powder metallurgy processes, and electroplating processes. The article also discusses the selection criteria for bearing materials.
Image
Strength retention at elevated temperatures for selected bearing alloys. (a...
Available to PurchasePublished: 31 December 2017
Fig. 9 Strength retention at elevated temperatures for selected bearing alloys. (a) Copper-base alloys. (b) Aluminum-base alloys. (c) Zinc-base alloys. (d) Lead-base alloys and tin-base alloys
More
Book Chapter
Tin and Tin Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
... of tin solders tin chemicals tin-base alloys tinplate TIN is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating for steel, that is, tinplate. In the molten state, it reacts with and readily wets most of the common metals and their alloys...
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and secondary production of tin and explains the uses of tin in coating, namely tinplating, electroplating, and hot dip coatings. It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid alloys, type metals, copper alloys, dental alloys, cast irons, titanium alloys, and zirconium alloys. Finally, it presents a short note on the applications of tin powder and corrosion resistance of tin.
Book Chapter
Metallography and Microstructures of Tin and Tin Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003778
EISBN: 978-1-62708-177-1
... Abstract This article describes the specimen preparation steps for tin and tin alloys, and for harder base metals which are coated with these materials with illustrations. The steps discussed include sectioning, mounting, grinding, polishing, and etching. The article provides information...
Abstract
This article describes the specimen preparation steps for tin and tin alloys, and for harder base metals which are coated with these materials with illustrations. The steps discussed include sectioning, mounting, grinding, polishing, and etching. The article provides information on etchants for tin and tin alloys in tabular form. It presents the procedure recommended for electron microscopy to determine the nature of the intermetallic compound formed by the reaction between tin or tin-lead coatings on various substrates. The article concludes with an illustration of the microstructures of tin-copper, tin-lead, tin-lead-cadmium, tin-antimony, tin-antimony-copper, tin-antimony-copper-lead, tin-silver, tin-indium, tin-zinc, and tin-zinc-copper systems.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001076
EISBN: 978-1-62708-162-7
..., with heat treatment (a) at intermediate thickness 24 h 68 9.9 69 10.0 73 10.6 47 36 17 20 2 1 2 (a) About 150–200 °C (302–392 °F). Source: Ref 2 Compositions of tin-base bearing alloys Table 11 Compositions of tin-base bearing alloys Designation Nominal...
Abstract
Tin is produced from both primary and secondary sources. This article discusses the chemical compositions, production, properties, microstructure and applications of tin and tin alloys. The major tin alloys discussed here are tin-antimony-copper alloy (pewter), bearing alloy, solder alloy and other alloys containing traces of tin. Data on tin consumption in the United States is presented graphically.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001273
EISBN: 978-1-62708-170-2
... and Fig. 1 . Compositions and physical properties of tin-base babbitts Table 1 Compositions and physical properties of tin-base babbitts ASTM B 23 alloy No. Specific gravity Composition, % Compressive yield point (a) (b) Ultimate compressive strength (a) (c) Hardness, HB (d) Melting...
Abstract
Babbitting is a process by which relatively soft metals are bonded chemically or mechanically to a stronger shell or stiffener which supports the weight and torsion of a rotating, oscillating, or sliding shaft. This article focuses on workpiece preparation and babbitting methods. Prior to casting, the workpiece must be scrupulously prepared by various cleaning, fluxing, and tinning steps. Babbitting of bearing shells can be accomplished by three methods, namely, static babbitting, centrifugal casting, and metal spray babbitting.
Book Chapter
Metallography and Microstructures of Lead and Its Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003773
EISBN: 978-1-62708-177-1
... done on a 120 rpm wheel using 0.05 μm Al 2 O 3 suspended in water as the abrasive. Etch-polishing is recommended for all lead and lead alloy specimens, especially for the softer lead-base metals such as unalloyed lead and low alloys of tin, bismuth, and antimony. Etch-polishing consists...
Abstract
This article describes the various specimen preparation procedures for lead, lead alloys, and sleeve bearings, including sectioning, mounting, grinding, polishing, and etching. The microscopic examination and microstructures of lead and lead alloys are discussed. The article also provides information on the microstructures of sleeve bearing materials.
Book Chapter
Selection Criteria for Brazing and Soldering Consumables
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001450
EISBN: 978-1-62708-173-3
...) and minor additions of tin and nickel. However, applicability of cadmium-containing alloys is limited, because of more-stringent Environmental Protection Agency restrictions on cadmium usage. The fourth group of brazing filler-metal alloys consists of eutectic titanium/zirconium-base alloys to which...
Abstract
This article focuses on the various criteria considered in the selection of product forms, joint types, solders, and filler metals for brazing and soldering of base material components.
Book Chapter
Corrosion of Tin and Tin Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003818
EISBN: 978-1-62708-183-2
... important of which are tin-base soft solders and bearing alloys and copper-base bronzes. Pure Tin Pure tin is subject to two phenomena that are sometimes confused with the corrosion process in the ordinary atmosphere. These are its low-temperature allotropic modification and its susceptibility...
Abstract
This article describes the allotropic modification and atmospheric corrosion of pure tin. Corrosion of pure tin due to oxidation reaction, and reaction with the other gases, water, acids, bases, and other liquid media, is discussed. The article provides information on corrosion behavior on soft solders, pewter, bearing alloys, tin-copper alloys, and tin-silver alloys. It reviews the influence of corrosion on immersion tin coating, tin-cadmium alloy coatings, tin-cobalt coatings, tin-copper coatings, tin-lead coatings, tin-nickel coatings, and tin-zinc coatings. The general properties and corrosion resistance of tinplate are summarized. The article also describes the methods of corrosion testing of coatings; these include an analysis of coating thickness measurements, porosity and rust resistance testing, solderability test, and specific special tests.
Book Chapter
Soldering
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003211
EISBN: 978-1-62708-199-3
...) is useful. Bismuth-base fusible alloys with melting points ranging from 45 to 250 °C (110 to 485 °F) are manufactured. Alloys based on indium with lead, tin, and silver additions are available to cover the temperature range from 95 to 315 °C (200 to 600 °F). Solders available in the temperature range from...
Abstract
Soldering involves heating a joint to a suitable temperature and using a filler metal (solder) that melts below 450 deg C (840 deg F). Beginning with an overview of the specification and standards and applications, this article discusses the principal levels and effects of the most common impurity elements in tin-lead solders. It describes the various processes involved in the successful soldering of joints, including shaping the parts to fit closely together; cleaning and preparing the surfaces to be joined; applying a flux; assembling the parts; and applying the heat and solder.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001460
EISBN: 978-1-62708-173-3
..., when compared with tin-lead alloys. Tin plate is sometimes used as a protective finish on device leads and terminations, although a solder dip coating is the preferred finish. Tin-base tin-lead solders represent the most widely used solders for electronic assembly: eutectic 63Sn-37Pb, near-eutectic...
Abstract
Soldering represents the primary method of attaching electronic components, such as resistors, capacitors, or packaged integrated circuits, to either printed wiring board whose defects is minimized by consideration of proper PWB design, device packages, and board assembly. This article discusses the categories that are most important to successful electronic soldering, namely, solders and fluxes selection, nature of base materials and finishes, solder joint design, and solderability testing.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005258
EISBN: 978-1-62708-187-0
... on minimum centrifugal forces of 20 g for tin-base alloys. The minimum for lead-base Babbitts is 16 g in horizontal centrifugal casting. To promote directional solidification after the Babbitt is poured, the tooling plates must be preheated to 200 °C (390 °F) minimum and faced with gaskets cut from...
Abstract
Horizontal centrifugal casting is used to cast parts having an axis of revolution. This article discusses the operations of three types of horizontal casting machine: the flanged shaft machine, the horizontal roller-type machine, and the double-face plate machine. It provides information on expendable and permanent molds used for centrifugal casting. The parameters and operations of the horizontal centrifugal casting process, including pouring and solidification, as well as the applications are described.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001459
EISBN: 978-1-62708-173-3
..., the potential for galvanic corrosion between the zinc constituent of the solder and the base metal(s) should be thoroughly investigated prior to its use. Physical properties of tin-zinc and zinc-aluminum solders Table 28 Physical properties of tin-zinc and zinc-aluminum solders Alloy Density, g/cm...
Abstract
Soldering technology has been used in applications ranging from the packaging of integrated circuit chips to the fabrication of industrial heat exchangers and consequently in structural or electronic applications. This article provides information on various soldering parameters, including types of solder alloy in terms of selection process; selection of substrate base material; flux selection based on adequate wettability by the solder; solder joint assembly; combined substrate, solder, and flux properties; and manufacturing procedures. Each of these parameters is explored using examples of both structural and electronic applications. The article concludes with a discussion on the environmental, safety, and health issues to be considered during soldering.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001078
EISBN: 978-1-62708-162-7
... corroding lead, is used for battery oxide and general alloying. Lead-Base Alloys Because lead is very soft and ductile, it is normally used commercially as lead alloys. Antimony, tin, arsenic, and calcium are the most common alloying elements. Antimony generally is used to give greater hardness...
Abstract
This article discusses the processing, properties, and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest usage of lead is in the lead acid storage batteries (in the grid plates, posts, and connector straps). Other applications include ammunition; cable sheathing; cast products such as type metals, terneplates, and foils; and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability and other characteristics. In many applications, lead is combined with stronger materials to make structures that have the best qualities of both materials such as the plumbum series.
Book Chapter
Process Design for Induction Brazing and Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005856
EISBN: 978-1-62708-167-2
... alloys, AWS classification BCuP: As indicated previously, this group of filler metals can only be used on nonferrous base metals . They contain relatively low amounts of silver ranging from 2 to 18%. A subgroup to this category is alloys that contain small amounts of tin as a replacement for the silver...
Abstract
This article focuses on the process design set-up procedure for brazing and soldering. It provides a detailed account of the types of base metals that can be joined by these processes, and reviews the factors to be considered to enhance the joint design. Criteria for selection of the right induction heating equipment to carry out the brazing or soldering operation are also provided. The article describes the types of brazing filler metals and joint designs. It also presents the types of inspection methods, namely, mechanical and visual, used to determine the quality of the brazed joint. Important considerations for the automation of induction-heated brazing applications are also discussed. The article concludes by emphasizing the need for documenting an in-control process which is a vitally important reference for questions or problems arising in the machine settings or part quality.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001346
EISBN: 978-1-62708-173-3
... The coating of the base metal surfaces with a more-solderable metal or alloy prior to the soldering operation can facilitate soldering. Coatings of tin, copper, silver, cadmium, iron, nickel, and the alloys of tin-lead, tin-zinc, tin-copper, and tin-nickel are used for this purpose. The advantages...
Abstract
Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base fluxes, organic fluxes, inorganic fluxes, and synthetically activated fluxes, are reviewed. The article describes the joint design and precleaning and surface preparation for soldering. It addresses some general considerations in the soldering of electronic devices. Soldering process parameters, affecting wetting and spreading phenomena, such as temperature, time, vapor pressure, metallurgical and chemical nature of the surfaces, and surface geometry, are discussed. The article also describes the applications of furnace soldering, resistance soldering, infrared soldering, and ultrasonic soldering. It contains a table that lists tests commonly used to evaluate the solderability properties of selected soldered components.
Book Chapter
Heat Treating of Low-Melting-Point Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006275
EISBN: 978-1-62708-169-6
...) was achieved in a Sn-3Cd-7Sb alloy that was quenched from 190 °C (375 °F) and then aged for either 24 h at 100 °C (212 °F) or 18 months at room temperature. Further studies have been carried out on tin-base alloys containing 7 to 10% Sb and 0 to 3% Cd in an effort to locate a bearing alloy that would...
Abstract
This article discusses the various heat treating processes, namely, solid-solution hardening, solution treating, solution aging and dispersion hardening, for low-melting-point alloys such as lead alloys, tin-rich alloys, and zinc alloys. Heat treating of tin-rich alloys has been practiced for bearing alloys, pewterware, and organ pipe alloys. The article reviews the principles underlying these applications.
Book Chapter
Properties and Selection of Powder Metallurgy Copper and Its Alloys
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006138
EISBN: 978-1-62708-175-7
..., depending on the application, and may contain any number of alloying elements (phosphorus, zinc, tin, iron, aluminum, manganese, boron, and zirconium, for example). Additive Manufacturing Additive manufacturing uses a number of copper-base materials for production. This field typically requires...
Abstract
Selection of the process steps used, powder chosen, and lubricant choice have marked effects on the quality of a sintered component. This article describes the alloy composition, mechanical and structural properties, processing routes, and advantages of the common members of the copper alloy family, namely, pure copper, brass, and bronze, which all aid in the selection of the suitable material for structural and bearing applications. It outlines the structural applications of nickel silver alloys.
Book Chapter
Continuous Electrodeposited Coatings for Steel Strip
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001271
EISBN: 978-1-62708-170-2
... in continuous steel strip plating lines is electrodeposited with one of five metallic coatings: zinc, tin, chromium, and alloys of zinc with either nickel or iron. Several other metallic coatings, such as copper, nickel, brass (Cu-Zn), and terne (Pb-Sn), are also applied by continuous steel strip plating...
Abstract
This article explains the applications of continuous electroplated steel. For each category of application, the type of coating needed and the key attributes of the coating are discussed. The bulk of the article describes electrodeposition technology, including plating line components and process classification.
1